Try a new search

Format these results:

Searched for:

in-biosketch:true

person:bredem02

Total Results:

315


Adiponectin is inversely associated with intramyocellular and intrahepatic lipids in obese premenopausal women

Bredella, Miriam A; Torriani, Martin; Ghomi, Reza H; Thomas, Bijoy J; Brick, Danielle J; Gerweck, Anu V; Harrington, Lindsey M; Miller, Karen K
Adiponectin, an adipokine secreted by adipocytes, exerts beneficial effects on glucose and lipid metabolism and has been found to improve insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. Adiponectin is found in several isoforms and the high-molecular weight (HMW) form has been linked most strongly to the insulin-sensitizing effects. Fat content in skeletal muscle (intramyocellular lipids, IMCL) and liver (intrahepatic lipids, IHL) can be quantified noninvasively using proton magnetic resonance spectroscopy ((1)H-MRS). The purpose of our study was to assess the relationship between HMW adiponectin and measures of glucose homeostasis, IMCL and IHL, and to determine predictors of adiponectin levels. We studied 66 premenopausal women (mean BMI 31.0 ± 6.6 kg/m(2)) who underwent (1)H-MRS of calf muscles and liver for IMCL and IHL, computed tomography (CT) of the abdomen for abdominal fat depots, dual-energy X-ray absorptiometry (DXA) for fat and lean mass assessments, HMW and total adiponectin, fasting lipid profile and an oral glucose tolerance test (homeostasis model assessment of insulin resistance (HOMA(IR)), glucose and insulin area under the curve). There were strong inverse associations between HMW adiponectin and measures of insulin resistance, IMCL and IHL, independent of visceral adipose tissue (VAT) and total body fat. IHL was the strongest predictor of adiponectin and adiponectin was a predictor of HOMA(IR). Our study showed that in premenopausal obese women HMW adiponectin is inversely associated with IMCL and IHL content. This suggests that adiponectin exerts positive effects on insulin sensitivity in obesity by decreasing intracellular triglyceride content in skeletal muscle and liver; it is also possible that our results reflect effects of insulin on adiponectin.
PMCID:3607306
PMID: 21151017
ISSN: 1930-739x
CID: 5600012

Determinants of bone mineral density in obese premenopausal women

Bredella, Miriam A; Torriani, Martin; Ghomi, Reza Hosseini; Thomas, Bijoy J; Brick, Danielle J; Gerweck, Anu V; Harrington, Lindsey M; Breggia, Anne; Rosen, Clifford J; Miller, Karen K
Despite being a risk factor for cardiovascular disease and diabetes mellitus, obesity has been thought to protect against osteoporosis. However, recent studies have demonstrated a differential impact of specific fat compartments on bone mineral density (BMD) with visceral adipose tissue (VAT) having potential detrimental effects on BMD. Visceral obesity is also associated with dysregulation of the GH/IGF-1 axis, an important regulator of bone homeostasis. The purpose of our study was to evaluate the differential effects of abdominal fat depots and muscle, vitamin D, and hormonal determinants, including insulin-like growth factor-1 (IGF-1), testosterone, and estradiol, on trabecular BMD of the lumbar spine. We studied 68 healthy obese premenopausal women (mean BMI, 36.7±4.2 kg/m(2)). Quantitative computed tomography (QCT) was used to assess body composition and lumbar trabecular BMD. There was an inverse association between BMD and VAT, independent of age and BMI (p=0.003). IGF-1 correlated positively with BMD and negatively with VAT and, in stepwise multivariate regression modeling, was the strongest predictor of BMD and procollagen type 1 amino-terminal propeptide (P1NP). Thigh muscle cross sectional area (CSA) and thigh muscle density were also associated with BMD (p<0.05), but 25-hydroxyvitamin D [25(OH)D], testosterone, free testosterone, and estradiol levels were not. 25(OH)D was associated inversely with BMI, total, and subcutaneous abdominal adipose tissue (p<0.05). These findings support the hypothesis that VAT exerts detrimental effects, whereas muscle mass exerts positive effects on BMD in premenopausal obese women. Moreover, our findings suggest that IGF-1 may be a mediator of the deleterious effects of VAT on bone health through effects on bone formation.
PMCID:3073669
PMID: 21195217
ISSN: 1873-2763
CID: 5600042

Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women

Bredella, Miriam A; Torriani, Martin; Ghomi, Reza Hosseini; Thomas, Bijoy J; Brick, Danielle J; Gerweck, Anu V; Rosen, Clifford J; Klibanski, Anne; Miller, Karen K
Recent studies have demonstrated an important physiologic link between bone and fat. Bone and fat cells arise from the same mesenchymal precursor cell within bone marrow, capable of differentiation into adipocytes or osteoblasts. Increased BMI appears to protect against osteoporosis. However, recent studies have suggested detrimental effects of visceral fat on bone health. Increased visceral fat may also be associated with decreased growth hormone (GH) and insulin-like growth factor 1 (IGF-1) levels which are important for maintenance of bone homeostasis. The purpose of our study was to assess the relationship between vertebral bone marrow fat and trabecular bone mineral density (BMD), abdominal fat depots, GH and IGF-1 in premenopausal women with obesity. We studied 47 premenopausal women of various BMI (range: 18-41 kg/m², mean 30 ± 7 kg/m²) who underwent vertebral bone marrow fat measurement with proton magnetic resonance spectroscopy (1H-MRS), body composition, and trabecular BMD measurement with computed tomography (CT), and GH and IGF-1 levels. Women with high visceral fat had higher bone marrow fat than women with low visceral fat. There was a positive correlation between bone marrow fat and visceral fat, independent of BMD. There was an inverse association between vertebral bone marrow fat and trabecular BMD. Vertebral bone marrow fat was also inversely associated with IGF-1, independent of visceral fat. Our study showed that vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 and BMD. This suggests that the detrimental effect of visceral fat on bone health may be mediated in part by IGF-1 as an important regulator of the fat and bone lineage.
PMCID:3593350
PMID: 20467419
ISSN: 1930-739x
CID: 5599852

Waist to hip ratio and trunk to extremity fat (DXA) are better surrogates for IMCL and for visceral fat respectively than for subcutaneous fat in adolescent girls

Savgan-Gurol, Eray; Bredella, Miriam; Russell, Melissa; Mendes, Nara; Klibanski, Anne; Misra, Madhusmita
BACKGROUND:Increased visceral adipose tissue (VAT) and intramyocellular lipids (IMCL) are associated with increased metabolic risk. Clinical and DXA body composition measures that are associated with VAT are generally even more strongly associated with subcutaneous adipose tissue (SAT) reflecting general adiposity, and thus are not specific for VAT. Measures more strongly associated with VAT than SAT (thus more specific for VAT), and predictors of IMCL have not been reported. SUBJECTS/METHODS/METHODS:We studied 30 girls 12-18 years; 15 obese, 15 normal-weight. The following were assessed: (1) anthropometric measures: waist circumference at the umbilicus and iliac crest (WC-UC and WC-IC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), (2) DXA measures: total fat, percent body fat (PBF), percent trunk fat (PTF), trunk-to-extremity fat ratio (TEFR), (3) MRI and 1H-MRS: VAT and SAT (L4-L5), soleus-IMCL. RESULTS:Group as a whole: WC, trunk fat and PBF were more strongly associated with SAT than VAT; none were specific for VAT. In contrast, PTF and TEFR were more significantly associated with VAT (r = 0.83 and 0.81 respectively, p <0.0001 for both) than SAT (r = 0.77 and 0.75, p < 0.0001 for both). Strongest associations of S-IMCL were with WHR (r = 0.66, p = 0.0004). Subgroup analysis: In obese girls, WHR and WHtR were more strongly correlated with VAT (r = 0.62 and 0.82, p = 0.04 and 0.001) than SAT (r = 0.41 and 0.73, p not significant and 0.007), and for DXA measures, PTF and TEFR were more significantly associated with VAT (r = 0.70 and 0.72, p = 0.007 and 0.006) than SAT (r = 0.52 and 0.53, p = 0.07 and 0.06). In controls, PTF and TEFR were more strongly correlated with VAT (r = 0.79, p = 0.0004 for both) than SAT (r = 0.71 and 0.72, p = 0.003 for both). WHR was associated with IMCL in obese girls (r = 0.78, p = 0.008), but not controls. CONCLUSION/CONCLUSIONS:Overall, WHR (anthropometry), and PTF and TEFR (DXA) are good surrogates for IMCL and for visceral fat respectively in adolescent girls.
PMCID:3018385
PMID: 21143876
ISSN: 1743-7075
CID: 5599992

Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa

Bredella, Miriam A; Ghomi, Reza Hosseini; Thomas, Bijoy J; Torriani, Martin; Brick, Danielle J; Gerweck, Anu V; Misra, Madhusmita; Klibanski, Anne; Miller, Karen K
Accurate methods for assessing body composition in subjects with obesity and anorexia nervosa (AN) are important for determination of metabolic and cardiovascular risk factors and to monitor therapeutic interventions. The purpose of our study was to assess the accuracy of dual-energy X-ray absorptiometry (DXA) for measuring abdominal and thigh fat, and thigh muscle mass in premenopausal women with obesity, AN, and normal weight compared to computed tomography (CT). In addition, we wanted to assess the impact of hydration on DXA-derived measures of body composition by using bioelectrical impedance analysis (BIA). We studied a total of 91 premenopausal women (34 obese, 39 with AN, and 18 lean controls). Our results demonstrate strong correlations between DXA- and CT-derived body composition measurements in AN, obese, and lean controls (r = 0.77-0.95, P < 0.0001). After controlling for total body water (TBW), the correlation coefficients were comparable. DXA trunk fat correlated with CT visceral fat (r = 0.51-0.70, P < 0.0001). DXA underestimated trunk and thigh fat and overestimated thigh muscle mass and this error increased with increasing weight. Our study showed that DXA is a useful method for assessing body composition in premenopausal women within the phenotypic spectrum ranging from obesity to AN. However, it is important to recognize that DXA may not accurately assess body composition in markedly obese women. The level of hydration does not significantly affect most DXA body composition measurements, with the exceptions of thigh fat.
PMCID:3607308
PMID: 20111013
ISSN: 1930-739x
CID: 5599832

Women with anorexia nervosa: finite element and trabecular structure analysis by using flat-panel volume CT

Walsh, Conor J; Phan, Catherine M; Misra, Madhusmita; Bredella, Miriam A; Miller, Karen K; Fazeli, Pouneh K; Bayraktar, Harun H; Klibanski, Anne; Gupta, Rajiv
PURPOSE/OBJECTIVE:To use finite element modeling based on flat-panel volume computed tomography (CT) and bone mineral density (BMD) provided by dual-energy x-ray absorptiometry (DXA) to compare bone failure load, stiffness, and trabecular structure in women with anorexia nervosa (AN) and age-matched normal-weight control subjects. MATERIALS AND METHODS/METHODS:The study was approved by the institutional review board and complied with HIPAA guidelines. Informed consent was obtained. Fourteen women, eight with AN (mean age, 26.6 years) and six control subjects (mean age, 26.3 years), underwent flat-panel volume CT of the distal radius to determine apparent trabecular bone volume fraction (BV/TV), apparent trabecular number (TbN), apparent trabecular thickness (TbTh), and apparent trabecular separation (TbSp). Bone strength and stiffness were calculated from uniaxial compression tests by using finite element models created from flat-panel volume CT. DXA was used to determine BMD of the radius, lumbar spine, and hip. Means ± standard deviations of all variables were calculated for both groups and compared (Student t test). Univariate regression analysis and stepwise regression modeling were performed. RESULTS:Patients with AN had lower values for stiffness (284.77 kN/mm ± 76.14 vs 389.97 kN/mm ± 84.90, P = .04), failure load (4.98 kN ± 1.23 vs 7.01 kN ± 1.52, P = .02), BV/TV (0.32% ± 0.09 vs 0.44% ± 0.02, P = .007), and TbN (1.15 mm(-3) ± 0.20 vs 1.43 mm(-3) ± 0.13, P = .008) and higher values for TbSp (0.62 mm ± 0.20 vs 0.40 mm ± 0.04, P = .02) compared with normal-weight control subjects. TbTh was lower in women with AN (P = .1). BMD measurements were significantly lower for the AN group. BMD measurements and trabecular parameters (except TbTh) correlated with stiffness and failure load (r = 0.58 to 0.83). CONCLUSION/CONCLUSIONS:Failure load and stiffness are abnormal in women with AN compared with those in normal-weight control subjects and correlate with BMD and trabecular parameters.
PMCID:2941723
PMID: 20713613
ISSN: 1527-1315
CID: 5599952

Throwing elbow in adults

Ouellette, Hugue A; Palmer, William; Torriani, Martin; Bredella, Miriam A
Biomechanics are central in understanding the pathophysiology and magnetic resonance (MR) imaging of overhead throwing athlete injuries. Repetitive excessive valgus forces at the elbow result in characteristic injuries due to medial joint distraction, lateral joint compression, and rotatory forces at the olecranon. MR imaging is useful for assessment of the throwing elbow in adults.
PMID: 20827622
ISSN: 1098-898x
CID: 5599972

Comparison of 3.0 T proton magnetic resonance spectroscopy short and long echo-time measures of intramyocellular lipids in obese and normal-weight women

Bredella, Miriam A; Ghomi, Reza Hosseini; Thomas, Bijoy J; Miller, Karen K; Torriani, Martin
PURPOSE/OBJECTIVE:To compare correlations of intramyocellular lipids (IMCL) measured by short and long echo-time proton magnetic resonance spectroscopy (1H-MRS) with indices of body composition and insulin resistance in obese and normal-weight women. MATERIALS AND METHODS/METHODS:We quantified IMCL of tibialis anterior (TA) and soleus (SOL) muscles in 52 premenopausal women (37 obese and 15 normal weight) using single-voxel 1H-MRS PRESS at 3.0 T with short (30 msec) and long (144 msec) echo times. Statistical analyses were performed to determine correlations of IMCL with body composition as determined by computed tomography (CT) and insulin resistance indices and to compare correlation coefficients from short and long echo-time data. Signal-to-noise ratio (SNR), linewidth, and coefficients of variation (CV) of short and long echo-time spectra were calculated. RESULTS:Short and long echo-time IMCL from TA and SOL significantly correlated with body mass index (BMI) and abdominal fat depots (r = 0.32 to 0.70, P = <0.05), liver density (r = -0.39 to -0.50, P < 0.05), and glucose area under the curve as a measure of insulin resistance (r = 0.47 to 0.49, P < 0.05). There was no significant difference between correlation coefficients of short and long echo-time spectra (P > 0.5). Short echo-time IMCL in both muscles showed significantly higher SNR (P < 0.0001) and lower CVs when compared to long echo-time acquisitions. Linewidth measures were not significantly different between groups. CONCLUSION/CONCLUSIONS:IMCL quantification using short and long echo-time 1H-MRS at 3.0 T is useful to detect differences in muscle lipid content in obese and normal-weight subjects. In addition, IMCL correlates with body composition and markers of insulin resistance in this population with no significant difference in correlations between short and long echo-times. Short echo-time IMCL quantification of TA and SOL muscles at 3.0 T was superior to long echo-time due to better SNR and better reproducibility.
PMCID:3662051
PMID: 20677267
ISSN: 1522-2586
CID: 5599932

Perspective: the bone-fat connection

Bredella, Miriam A
PMID: 20473494
ISSN: 1432-2161
CID: 5599872

Hormone predictors of abnormal bone microarchitecture in women with anorexia nervosa

Lawson, Elizabeth A; Miller, Karen K; Bredella, Miriam A; Phan, Catherine; Misra, Madhusmita; Meenaghan, Erinne; Rosenblum, Lauren; Donoho, Daniel; Gupta, Rajiv; Klibanski, Anne
Osteopenia is a complication of anorexia nervosa (AN) associated with a two- to three-fold increase in fractures. Nutritional deficits and hormonal abnormalities are thought to mediate AN-induced bone loss. Alterations in bone microarchitecture may explain fracture risk independent of bone mineral density (BMD). Advances in CT imaging now allow for noninvasive evaluation of trabecular microstructure at peripheral sites in vivo. Few data are available regarding bone microarchitecture in AN. We therefore performed a cross-sectional study of 23 women (12 with AN and 11 healthy controls) to determine hormonal predictors of trabecular bone microarchitecture. Outcome measures included bone microarchitectural parameters at the ultradistal radius by flat-panel volume CT (fpVCT); BMD at the PA and lateral spine, total hip, femoral neck, and ultradistal radius by dual energy X-ray absorptiometry (DXA); and IGF-I, leptin, estradiol, testosterone, and free testosterone levels. Bone microarchitectural measures, including apparent (app.) bone volume fraction, app. trabecular thickness, and app. trabecular number, were reduced (p<0.03) and app. trabecular spacing was increased (p=0.02) in AN versus controls. Decreased structural integrity at the ultradistal radius was associated with decreased BMD at all sites (p<or=0.05) except for total hip. IGF-I, leptin, testosterone, and free testosterone levels predicted bone microarchitecture. All associations between both IGF-I and leptin levels and bone microarchitectural parameters and most associations between androgen levels and microarchitecture remained significant after controlling for body mass index. We concluded that bone microarchitecture is abnormal in women with AN. Endogenous IGF-I, leptin, and androgen levels predict bone microarchitecture independent of BMI.
PMCID:2818221
PMID: 19747572
ISSN: 1873-2763
CID: 5600002