Searched for: in-biosketch:true
person:chandh02
Accelerating Abdominopelvic Imaging
Tong, A; Chandarana, H
EMBASE:2020193117
ISSN: 2589-8701
CID: 5366462
Respiratory Motion Management in Abdominal MRI: Radiology In Training
Nepal, Pankaj; Bagga, Barun; Feng, Li; Chandarana, Hersh
A 96-year-old woman had a suboptimal evaluation of liver observations at abdominal MRI due to significant respiratory motion. State-of-the-art strategies to minimize respiratory motion during clinical abdominal MRI are discussed.
PMID: 35997609
ISSN: 1527-1315
CID: 5338182
New-Generation Low-Field Magnetic Resonance Imaging of Hip Arthroplasty Implants Using Slice Encoding for Metal Artifact Correction: First In Vitro Experience at 0.55 T and Comparison With 1.5 T
Khodarahmi, Iman; Brinkmann, Inge M; Lin, Dana J; Bruno, Mary; Johnson, Patricia M; Knoll, Florian; Keerthivasan, Mahesh B; Chandarana, Hersh; Fritz, Jan
OBJECTIVES/OBJECTIVE:Despite significant progress, artifact-free visualization of the bone and soft tissues around hip arthroplasty implants remains an unmet clinical need. New-generation low-field magnetic resonance imaging (MRI) systems now include slice encoding for metal artifact correction (SEMAC), which may result in smaller metallic artifacts and better image quality than standard-of-care 1.5 T MRI. This study aims to assess the feasibility of SEMAC on a new-generation 0.55 T system, optimize the pulse protocol parameters, and compare the results with those of a standard-of-care 1.5 T MRI. MATERIALS AND METHODS/METHODS:Titanium (Ti) and cobalt-chromium total hip arthroplasty implants embedded in a tissue-mimicking American Society for Testing and Materials gel phantom were evaluated using turbo spin echo, view angle tilting (VAT), and combined VAT and SEMAC (VAT + SEMAC) pulse sequences. To refine an MRI protocol at 0.55 T, the type of metal artifact reduction techniques and the effect of various pulse sequence parameters on metal artifacts were assessed through qualitative ranking of the images by 3 expert readers while taking measured spatial resolution, signal-to-noise ratios, and acquisition times into consideration. Signal-to-noise ratio efficiency and artifact size of the optimized 0.55 T protocols were compared with the 1.5 T standard and compressed-sensing SEMAC sequences. RESULTS:Overall, the VAT + SEMAC sequence with at least 6 SEMAC encoding steps for Ti and 9 for cobalt-chromium implants was ranked higher than other sequences for metal reduction (P < 0.05). Additional SEMAC encoding partitions did not result in further metal artifact reductions. Permitting minimal residual artifacts, low magnetic susceptibility Ti constructs may be sufficiently imaged with optimized turbo spin echo sequences obviating the need for SEMAC. In cross-platform comparison, 0.55 T acquisitions using the optimized protocols are associated with 45% to 64% smaller artifacts than 1.5 T VAT + SEMAC and VAT + compressed-sensing/SEMAC protocols at the expense of a 17% to 28% reduction in signal-to-noise ratio efficiency. B1-related artifacts are invariably smaller at 0.55 T than 1.5 T; however, artifacts related to B0 distortion, although frequently smaller, may appear as signal pileups at 0.55 T. CONCLUSIONS:Our results suggest that new-generation low-field SEMAC MRI reduces metal artifacts around hip arthroplasty implants to better advantage than current 1.5 T MRI standard of care. While the appearance of B0-related artifacts changes, reduction in B1-related artifacts plays a major role in the overall benefit of 0.55 T.
PMID: 35239614
ISSN: 1536-0210
CID: 5174642
Deep Learning Reconstruction Enables Highly Accelerated Biparametric MR Imaging of the Prostate
Johnson, Patricia M; Tong, Angela; Donthireddy, Awani; Melamud, Kira; Petrocelli, Robert; Smereka, Paul; Qian, Kun; Keerthivasan, Mahesh B; Chandarana, Hersh; Knoll, Florian
BACKGROUND:Early diagnosis and treatment of prostate cancer (PCa) can be curative; however, prostate-specific antigen is a suboptimal screening test for clinically significant PCa. While prostate magnetic resonance imaging (MRI) has demonstrated value for the diagnosis of PCa, the acquisition time is too long for a first-line screening modality. PURPOSE/OBJECTIVE:To accelerate prostate MRI exams, utilizing a variational network (VN) for image reconstruction. STUDY TYPE/METHODS:Retrospective. SUBJECTS/METHODS:One hundred and thirteen subjects (train/val/test: 70/13/30) undergoing prostate MRI. FIELD STRENGTH/SEQUENCE/UNASSIGNED:3.0 T; a T2 turbo spin echo (TSE) T2-weighted image (T2WI) sequence in axial and coronal planes, and axial echo-planar diffusion-weighted imaging (DWI). ASSESSMENT/RESULTS:, and apparent diffusion coefficient map-according to the Prostate Imaging Reporting and Data System (PI-RADS v2.1), for both VN and standard reconstructions. Accuracy of PI-RADS ≥3 for clinically significant cancer was computed. Projected scan time of the retrospectively under-sampled biparametric exam was also computed. STATISTICAL TESTS/UNASSIGNED:One-sided Wilcoxon signed-rank test was used for comparison of image quality. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for lesion detection and grading. Generalized estimating equation with cluster effect was used to compare differences between standard and VN bp-MRI. A P-value of <0.05 was considered statistically significant. RESULTS:(Reader 1: 3.20 ± 0.70 (Standard), 3.40 ± 0.75 (VN) P = 0.98; Reader 2: 2.85 ± 0.81 (Standard), 3.00 ± 0.79 (VN) P = 0.93; Reader 3: 4.45 ± 0.72 (Standard), 4.05 ± 0.69 (VN) P = 0.02; Reader 4: 4.50 ± 0.69 (Standard), 4.45 ± 0.76 (VN) P = 0.50). In the lesion evaluation study, there was no significant difference in the number of PI-RADS ≥3 lesions identified on standard vs. VN bp-MRI (P = 0.92, 0.59, 0.87) with similar sensitivity and specificity for clinically significant cancer. The average scan time of the standard clinical biparametric exam was 11.8 minutes, and this was projected to be 3.2 minutes for the accelerated exam. DATA CONCLUSION/UNASSIGNED:Diagnostic accelerated biparametric prostate MRI exams can be performed using deep learning methods in <4 minutes, potentially enabling rapid screening prostate MRI. LEVEL OF EVIDENCE/METHODS:3 TECHNICAL EFFICACY: Stage 5.
PMID: 34877735
ISSN: 1522-2586
CID: 5110242
Repeatability, robustness, and reproducibility of texture features on 3Â Tesla liver MRI
Prabhu, Vinay; Gillingham, Nicolas; Babb, James S; Mali, Rahul D; Rusinek, Henry; Bruno, Mary T; Chandarana, Hersh
OBJECTIVE:Texture features are proposed for classification and prognostication, with lacking information about variability. We assessed 3 T liver MRI feature variability. METHODS:Five volunteers underwent standard 3 T MRI, and repeated with identical and altered parameters. Two readers placed regions of interest using 3DSlicer. Repeatability (between standard and repeat scan), robustness (between standard and parameter changed scan), and reproducibility (two reader variation) were computed using coefficient of variation (CV). RESULTS:67%, 49%, and 61% of features had good-to-excellent (CV ≤ 10%) repeatability on ADC, T1, and T2, respectively, least frequently for first order (19-35%). 22%, 19%, and 21% of features had good-to-excellent robustness on ADC, T1, and T2, respectively. 52%, 35%, and 25% of feature measurements had good-to-excellent inter-reader reproducibility on ADC, T1, and T2, respectively, with highest good-to-excellent reproducibility for first order features on ADC/T1. CONCLUSION/CONCLUSIONS:We demonstrated large variations in texture features on 3 T liver MRI. Further study should evaluate methods to reduce variability.
PMID: 35092926
ISSN: 1873-4499
CID: 5155042
Simultaneous evaluation of perfusion and morphology using GRASP MRI in hepatic fibrosis
Yoon, Jeong Hee; Lee, Jeong Min; Yu, Mi Hye; Hur, Bo Yun; Grimm, Robert; Sourbron, Steven; Chandarana, Hersh; Son, Yohan; Basak, Susmita; Lee, Kyoung-Bun; Yi, Nam-Joon; Lee, Kwang-Woong; Suh, Kyung-Suk
OBJECTIVES/OBJECTIVE:To determine if golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced (DCE)-MRI allows simultaneous evaluation of perfusion and morphology in liver fibrosis. METHODS:Participants who were scheduled for liver biopsy or resection were enrolled (NCT02480972). Images were reconstructed at 12-s temporal resolution for morphologic assessment and at 3.3-s temporal resolution for quantitative evaluation. The image quality of the morphologic images was assessed on a four-point scale, and the Liver Imaging Reporting and Data System score was recorded for hepatic observations. Comparisons were made between quantitative parameters of DCE-MRI for the different fibrosis stages, and for hepatocellular carcinoma (HCCs) with different LR features. RESULTS:DCE-MRI of 64 participants (male = 48) were analyzed. The overall image quality consistently stood at 3.5 ± 0.4 to 3.7 ± 0.4 throughout the exam. Portal blood flow significantly decreased in participants with F2-F3 (n = 18, 175 ± 110 mL/100 mL/min) and F4 (n = 12, 98 ± 47 mL/100 mL/min) compared with those in participants with F0-F1 (n = 34, 283 ± 178 mL/100 mL/min, p < 0.05 for all). In participants with F4, the arterial fraction and extracellular volume were significantly higher than those in participants with F0-F1 and F2-F3 (p < 0.05). Compared with HCCs showing non-LR-M features (n = 16), HCCs with LR-M (n = 5) had a significantly prolonged mean transit time and lower arterial blood flow (p < 0.05). CONCLUSIONS:Liver MRI using GRASP obtains both sufficient spatial resolution for confident diagnosis and high temporal resolution for pharmacokinetic modeling. Significant differences were found between the MRI-derived portal blood flow at different hepatic fibrosis stages. KEY POINTS/CONCLUSIONS:A single MRI examination is able to provide both images with sufficient spatial resolution for anatomic evaluation and those with high temporal resolution for pharmacokinetic modeling. Portal blood flow was significantly lower in clinically significant hepatic fibrosis and mean transit time and extracellular volume increased in cirrhosis, compared with those in no or mild hepatic fibrosis. HCCs with different LR features showed different quantitative parameters of DCE-MRI: longer mean transit time and lower arterial flow were observed in HCCs with LR-M features.
PMID: 34120229
ISSN: 1432-1084
CID: 4911192
Diagnostic abdominal MR imaging on a prototype low-field 0.55Â T scanner operating at two different gradient strengths
Chandarana, Hersh; Bagga, Barun; Huang, Chenchan; Dane, Bari; Petrocelli, Robert; Bruno, Mary; Keerthivasan, Mahesh; Grodzki, David; Block, Kai Tobias; Stoffel, David; Sodickson, Daniel K
PURPOSE:To develop a protocol for abdominal imaging on a prototype 0.55 T scanner and to benchmark the image quality against conventional 1.5 T exam. METHODS:In this prospective IRB-approved HIPAA-compliant study, 10 healthy volunteers were recruited and imaged. A commercial MRI system was modified to operate at 0.55 T (LF) with two different gradient performance levels. Each subject underwent non-contrast abdominal examinations on the 0.55 T scanner utilizing higher gradients (LF-High), lower adjusted gradients (LF-Adjusted), and a conventional 1.5 T scanner. The following pulse sequences were optimized: fat-saturated T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and Dixon T1-weighted imaging (T1WI). Three readers independently evaluated image quality in a blinded fashion on a 5-point Likert scale, with a score of 1 being non-diagnostic and 5 being excellent. An exact paired sample Wilcoxon signed-rank test was used to compare the image quality. RESULTS:Diagnostic image quality (overall image quality score ≥ 3) was achieved at LF in all subjects for T2WI, DWI, and T1WI with no more than one unit lower score than 1.5 T. The mean difference in overall image quality score was not significantly different between LF-High and LF-Adjusted for T2WI (95% CI - 0.44 to 0.44; p = 0.98), DWI (95% CI - 0.43 to 0.36; p = 0.92), and for T1 in- and out-of-phase imaging (95%C I - 0.36 to 0.27; p = 0.91) or T1 fat-sat (water only) images (95% CI - 0.24 to 0.18; p = 1.0). CONCLUSION:Diagnostic abdominal MRI can be performed on a prototype 0.55 T scanner, either with conventional or with reduced gradient performance, within an acquisition time of 10 min or less.
PMID: 34415411
ISSN: 2366-0058
CID: 5048652
Retrospective Assessment of the Impact of Primary Language Video Instructions on Image Quality of Abdominal MRI
Taffel, Myles T; Rosenkrantz, Andrew B; Foster, Jonathan A; Karajgikar, Jay A; Smereka, Paul N; Calasso, Felicia; Qian, Kun; Chandarana, Hersh
PURPOSE/OBJECTIVE:To assess the impact of instructional videos in patients' primary language on abdominal MR image quality for whom English is a second language (ESL). METHODS:Twenty-nine ESL patients viewed Spanish or Mandarin Chinese instructional videos (approximately 2.5 min in duration) in the preparation room before abdominal MRI (ESL-video group). Comparison groups included 50 ESL patients who underwent MRI before video implementation (ESL-no video group) and 81 English-speaking patients who were matched for age, sex, magnet strength, and history of prior MRI with patients in the first two groups. Three radiologists independently assessed respiratory motion and image quality on turbo spin-echo T2-weighted images (T2WI) and postcontrast T1-weighted images (T1WI) using 1 to 5 Likert scales. Groups were compared using Kruskal-Wallis tests as well as generalized estimating equations (GEEs) to adjust for possible confounders. RESULTS:For T2WI respiratory motion and T2WI overall image quality, Likert scores of the ESL-no video group (mean score across readers of 2.6 ± 0.1 and 2.6 ± 0.1) were lower (all P < .001) compared with English-speaking (3.3 ± 0.2 and 3.3 ± 0.1) and ESL-video (3.2 ± 0.1 and 3.0 ± 0.2) groups. In the GEE model, mean T2WI respiratory motion (both adjusted P < .001) and T2WI overall quality (adjusted P = .03 and .11) were higher in English and ESL-video groups compared with ESL-no video group. For T1WI respiratory motion and T1WI overall image quality, Likert scores were not different between groups (P > .05), including in the GEE model (adjusted P > .05). CONCLUSION/CONCLUSIONS:Providing ESL patients with an instructional video in their primary language before abdominal MRI is an effective intervention to improve imaging quality.
PMID: 34419478
ISSN: 1558-349x
CID: 5061062
Association of body composition parameters measured on CT with risk of hospitalization in patients with Covid-19
Chandarana, Hersh; Pisuchpen, Nisanard; Krieger, Rachel; Dane, Bari; Mikheev, Artem; Feng, Yang; Kambadakone, Avinash; Rusinek, Henry
PURPOSE/OBJECTIVE:To assess prognostic value of body composition parameters measured at CT to predict risk of hospitalization in patients with COVID-19 infection. METHODS:177 patients with SARS-CoV-2 infection and with abdominopelvic CT were included in this retrospective IRB approved two-institution study. Patients were stratified based on disease severity as outpatients (no hospital admission) and patients who were hospitalized (inpatients). Two readers blinded to the clinical outcome segmented axial CT images at the L3 vertebral body level for visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), muscle adipose tissue (MAT), muscle mass (MM). VAT to total adipose tissue ratio (VAT/TAT), MAT/MM ratio, and muscle index (MI) at L3 were computed. These measures, along with detailed clinical risk factors, were compared in patients stratified by severity. Various logistic regression clinical and clinical + imaging models were compared to discriminate inpatients from outpatients. RESULTS:There were 76 outpatients (43%) and 101 inpatients. Male gender (p = 0.013), age (p = 0.0003), hypertension (p = 0.0003), diabetes (p = 0.0001), history of cardiac disease (p = 0.007), VAT/TAT (p < 0.0001), and MAT/MM (p < 0.0001), but not BMI, were associated with hospitalization. A clinical model (age, gender, BMI) had AUC of 0.70. Addition of VAT/TAT to the clinical model improved the AUC to 0.73. Optimal model that included gender, BMI, race (Black), MI, VAT/TAT, as well as interaction between gender and VAT/TAT and gender and MAT/MM demonstrated the highest AUC of 0.83. CONCLUSION/CONCLUSIONS:MAT/MM and VAT/TAT provides important prognostic information in predicting patients with COVID-19 who are likely to require hospitalization.
PMCID:8592118
PMID: 34801878
ISSN: 1872-7727
CID: 5063182
Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence
Shanbhogue, Krishna; Tong, Angela; Smereka, Paul; Nickel, Dominik; Arberet, Simon; Anthopolos, Rebecca; Chandarana, Hersh
OBJECTIVE:To compare the image quality of an accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction (DL HASTE-FS) with conventional T2-weighted FS sequence (conventional T2 FS) at 1.5 T. METHODS:One hundred consecutive patients who underwent clinical MRI of the liver at 1.5 T including the conventional T2-weighted fat-suppressed sequence (T2 FS) and accelerated single-shot T2-weighted MRI of the liver with deep learning-based image reconstruction (DL HASTE-FS) were included. Images were reviewed independently by three blinded observers who used a 5-point confidence scale for multiple measures regarding the artifacts and image quality. Descriptive statistics and McNemar's test were used to compare image quality scores and percentage of lesions detected by each sequence, respectively. Intra-class correlation coefficient (ICC) was used to assess consistency in reader scores. RESULTS:Acquisition time for DL HASTE-FS was 51.23 +/ 10.1 s, significantly (p < 0.001) shorter than conventional T2-FS (178.9 ± 85.3 s). DL HASTE-FS received significantly higher scores than conventional T2-FS for strength and homogeneity of fat suppression; sharpness of liver margin; sharpness of intra-hepatic vessel margin; in-plane and through-plane respiratory motion; other ghosting artefacts; liver-fat contrast; and overall image quality (all, p < 0.0001). DL HASTE-FS also received higher scores for lesion conspicuity and sharpness of lesion margin (all, p < .001), without significant difference for liver lesion contrast (p > 0.05). CONCLUSIONS:Accelerated single-shot T2-weighted MRI of the liver with deep learning-based image reconstruction showed superior image quality compared to the conventional T2-weighted fat-suppressed sequence despite a 4-fold reduction in acquisition time. KEY POINTS/CONCLUSIONS:• Conventional fat-suppressed T2-weighted sequence (conventional T2 FS) can take unacceptably long to acquire and is the most commonly repeated sequence in liver MRI due to motion. • DL HASTE-FS demonstrated superior image quality, improved respiratory motion and other ghosting artefacts, and increased lesion conspicuity with comparable liver-to-lesion contrast compared to conventional T2FS sequence. • DL HASTE- FS has the potential to replace conventional T2 FS sequence in routine clinical MRI of the liver, reducing the scan time, and improving the image quality.
PMID: 33961086
ISSN: 1432-1084
CID: 4866842