Try a new search

Format these results:

Searched for:

in-biosketch:true

person:ds3428

Total Results:

36


Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

Abedini, Andisheh; Plesner, Annette; Cao, Ping; Ridgway, Zachary; Zhang, Jinghua; Tu, Ling-Hsien; Middleton, Chris T; Chao, Brian; Sartori, Daniel; Meng, Fanling; Wang, Hui; Wong, Amy G; Zanni, Martin T; Verchere, C Bruce; Raleigh, Daniel P; Schmidt, Ann Marie
Islet amyloidosis by IAPP contributes to pancreatic beta-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 beta-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive beta-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced beta-cell death.
PMCID:4940161
PMID: 27213520
ISSN: 2050-084x
CID: 2114872

GATA factors promote ER integrity and β-cell survival and contribute to type 1 diabetes risk

Sartori, Daniel J; Wilbur, Christopher J; Long, Simon Y; Rankin, Matthew M; Li, Changhong; Bradfield, Jonathan P; Hakonarson, Hakon; Grant, Struan F A; Pu, William T; Kushner, Jake A
Pancreatic β-cell survival remains poorly understood despite decades of research. GATA transcription factors broadly regulate embryogenesis and influence survival of several cell types, but their role in adult β-cells remains undefined. To investigate the role of GATA factors in adult β-cells, we derived β-cell-inducible Gata4- and Gata6-knockout mice, along with whole-body inducible Gata4 knockouts. β-Cell Gata4 deletion modestly increased the proportion of dying β-cells in situ with ultrastructural abnormalities suggesting endoplasmic reticulum (ER) stress. Notably, glucose homeostasis was not grossly altered in Gata4- and Gata6-knockout mice, suggesting that GATA factors do not have essential roles in β-cells. Several ER stress signals were up-regulated in Gata4 and Gata6 knockouts, most notably CHOP, a known regulator of ER stress-induced apoptosis. However, ER stress signals were not elevated to levels observed after acute thapsigargin administration, suggesting that GATA deficiency only caused mild ER stress. Simultaneous deletion of Gata4 and CHOP partially restored β-cell survival. In contrast, whole-body inducible Gata4 knockouts displayed no evidence of ER stress in other GATA4-enriched tissues, such as heart. Indeed, distinct GATA transcriptional targets were differentially expressed in islets compared with heart. Such β-cell-specific findings prompted study of a large meta-analysis dataset to investigate single nucleotide polymorphisms harbored within the human GATA4 locus, revealing several variants significantly associated with type 1 diabetes mellitus. We conclude that GATA factors have important but nonessential roles to promote ER integrity and β-cell survival in a tissue-specific manner and that GATA factors likely contribute to type 1 diabetes mellitus pathogenesis.
PMCID:3874454
PMID: 24284823
ISSN: 1944-9917
CID: 3218542

PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis

Gao, Yan; Sartori, Daniel J; Li, Changhong; Yu, Qian-Chun; Kushner, Jake A; Simon, M Celeste; Diehl, J Alan
Germ line PERK mutations are associated with diabetes mellitus and growth retardation in both rodents and humans. In contrast, late embryonic excision of PERK permits islet development and was found to prevent onset of diabetes, suggesting that PERK may be dispensable in the adult pancreas. To definitively establish the functional role of PERK in adult pancreata, we generated mice harboring a conditional PERK allele in which excision is regulated by tamoxifen administration. Deletion of PERK in either young adult or mature adult mice resulted in hyperglycemia associated with loss of islet and β cell architecture. PERK excision triggered intracellular accumulation of proinsulin and Glut2, massive endoplasmic reticulum (ER) expansion, and compensatory activation of the remaining unfolded-protein response (UPR) signaling pathways specifically in pancreatic tissue. Although PERK excision increased β cell death, this was not a result of decreased proliferation as previously reported. In contrast, a significant and specific increase in β cell proliferation was observed, a result reflecting increased cyclin D1 accumulation. This work demonstrates that contrary to expectations, PERK is required for secretory homeostasis and β cell survival in adult mice.
PMCID:3510549
PMID: 23071091
ISSN: 1098-5549
CID: 3218532

Gata Transcription Factors Promote Endoplasmic Reticulum Integrity and Pancreatic beta-cell Survival [Meeting Abstract]

Sartori, Daniel J.; Wilbur, Christopher J.; Long, Simon; Li, Changhong; Pu, William T.; Kushner, Jake A.
ISI:000209842904320
ISSN: 0012-1797
CID: 3218552

Immunofluorescent detection of two thymidine analogues (CldU and IdU) in primary tissue

Tuttle, Alex H; Rankin, Matthew M; Teta, Monica; Sartori, Daniel J; Stein, Geneva M; Kim, Gina J; Virgilio, Cristina; Granger, Anne; Zhou, Di; Long, Simon H; Schiffman, Alisa B; Kushner, Jake A
Accurate measurement of cell division is a fundamental challenge in experimental biology that becomes increasingly complex when slowly dividing cells are analyzed. Established methods to detect cell division include direct visualization by continuous microscopy in cell culture, dilution of vital dyes such as carboxyfluorescein di-aetate succinimidyl ester (CFSE), immuno-detection of mitogenic antigens such as ki67 or PCNA, and thymidine analogues. Thymidine analogues can be detected by a variety of methods including radio-detection for tritiated thymidine, immuno-detection for bromo-deoxyuridine (BrdU), chloro-deoxyuridine (CldU) and iodo-deoxyuridine (IdU), and chemical detection for ethinyl-deoxyuridine (EdU). We have derived a strategy to detect sequential incorporation of different thymidine analogues (CldU and IdU) into tissues of adult mice. Our method allows investigators to accurately quantify two successive rounds of cell division. By optimizing immunostaining protocols our approach can detect very low dose thymidine analogues administered via the drinking water, safe to administer to mice for prolonged periods of time. Consequently, our technique can be used to detect cell turnover in very long-lived tissues. Optimal immunofluoresent staining results can be achieved in multiple tissue types, including pancreas, skin, gut, liver, adrenal, testis, ovary, thyroid, lymph node, and brain. We have also applied this technique to identify oncogenic transformation within tissues. We have further applied this technique to determine if transit-amplifying cells contribute to growth or renewal of tissues. In this sense, sequential administration of thymidine analogues represents a novel approach for studying the origins and survival of cells involved in tissue homeostasis.
PMCID:3159664
PMID: 21178965
ISSN: 1940-087x
CID: 3218522

Cyclin D2 protein stability is regulated in pancreatic beta-cells

He, Lu Mei; Sartori, Daniel J; Teta, Monica; Opare-Addo, Lynn M; Rankin, Matthew M; Long, Simon Y; Diehl, J Alan; Kushner, Jake A
The molecular determinants of beta-cell mass expansion remain poorly understood. Cyclin D2 is the major D-type cyclin expressed in beta-cells, essential for adult beta-cell growth. We hypothesized that cyclin D2 could be actively regulated in beta-cells, which could allow mitogenic stimuli to influence beta-cell expansion. Cyclin D2 protein was sharply increased after partial pancreatectomy, but cyclin D2 mRNA was unchanged, suggesting posttranscriptional regulatory mechanisms influence cyclin D2 expression in beta-cells. Consistent with this hypothesis, cyclin D2 protein stability is powerfully regulated in fibroblasts. Threonine 280 of cyclin D2 is phosphorylated, and this residue critically limits D2 stability. We derived transgenic (tg) mice with threonine 280 of cyclin D2 mutated to alanine (T280A) or wild-type cyclin D2 under the control of the insulin promoter. Cyclin D2 T280A protein was expressed at much higher levels than wild-type cyclin D2 protein in beta-cells, despite equivalent expression of tg mRNAs. Cyclin D2 T280A tg mice exhibited a constitutively nuclear cyclin D2 localization in beta-cells, and increased cyclin D2 stability in islets. Interestingly, threonine 280-mutant cyclin D2 tg mice had greatly reduced beta-cell apoptosis, with suppressed expression of proapoptotic genes. Suppressed beta-cell apoptosis in threonine 280-mutant cyclin D2 tg mice resulted in greatly increased beta-cell area in aged mice. Taken together, these data indicate that cyclin D2 is regulated by protein stability in pancreatic beta-cells, that signals that act upon threonine 280 limit cyclin D2 stability in beta-cells, and that threonine 280-mutant cyclin D2 overexpression prolongs beta-cell survival and augments beta-cell mass expansion.
PMCID:2775938
PMID: 19628581
ISSN: 1944-9917
CID: 3218512