Searched for: in-biosketch:true
person:mungej01
Integrin alpha8beta1 mediates adhesion to LAP-TGFbeta1
Lu, Min; Munger, John S; Steadele, Melissa; Busald, Christina; Tellier, Marinka; Schnapp, Lynn M
The development of fibrosis is a common response to a variety of injuries and results in the net accumulation of matrix proteins and impairment of normal organ function. We previously reported that the integrin alpha8beta1 is expressed by alveolar interstitial cells in normal lung and is upregulated during the development of fibrosis. TGFbeta1 is an important mediator of the inflammatory response in pulmonary fibrosis. TGFbeta1 is secreted as a latent protein that is non-covalently associated with latency-associated peptide (LAP) and requires activation to exert its effects. LAP-TGFbeta1 and LAP-TGFbeta3 contain the tripeptide sequence, arginine-glycine-aspartic acid (RGD), a known integrin recognition motif. The integrin alpha8beta1 binds to several ligands such as fibronectin and vitronectin through the RGD sequence. Recent reports demonstrate that the integrins alphavbeta1, alphavbeta6 and alphavbeta8 adhere to LAP-TGFbeta1 through the RGD site. Therefore, we asked whether LAP-TGFbeta1 might be a ligand for alpha8beta1 and whether this may be important in the development of fibrosis. We found that cell lines transfected with alpha8 subunit were able to spread on and adhere to recombinant LAP-TGFbeta1 significantly better than mock transfected cell lines. alpha8-transfected cells were also able to adhere to LAP-TGFbeta3 significantly better than mock transfected cells. Adhesion to LAP-TGFbeta1 was enhanced by activation of alpha8beta1 by Mn(2+), or 8A2, an integrin beta1 activating antibody. Furthermore, cell adhesion was abolished when we used a recombinant LAP-TGFbeta1 protein in which the RGD site was mutated to RGE. alpha8beta1 binding to LAP-TGFbeta1 increased cell proliferation and phosphorylation of FAK and ERK, but did not activate of TGFbeta1. These data strongly suggest that LAP-TGFbeta1 is a ligand of alpha8beta1 and interaction of alpha8beta1 with LAP-TGFbeta1 may influence cell behavior
PMID: 12415008
ISSN: 0021-9533
CID: 35176
Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition
Parekh, Trilok V; Gama, Patricia; Wen, Xie; Demopoulos, Rita; Munger, John S; Carcangiu, Maria-Luisa; Reiss, Michael; Gold, Leslie I
Transforming growth factor beta (TGF-beta), a potent ubiquitous endogenous inhibitor of epithelial cell growth, is secreted as a latent molecule (LTGF-beta)requiring activation for function. TGF-beta signals through the type I(TbetaRI) and type II (TbetaRII) receptors, which cooperate to phosphorylate/activate Smad2/3, the transcriptional regulators of genes that induce cell cycle arrest. That carcinomas grow in vivo suggests that they are refractory to TGF-beta. However, this has been difficult to prove because of an inability to analyze the functional status of TGF-beta in vivo as well as lack of close physiological paradigms for carcinoma cells in vitro. The current studies demonstrate that whereas primary cultures of endometrial epithelial cells derived from normal proliferative endometrium (PE; n = 10) were dose-dependently and maximally growth inhibited by 55% +/- 5.3% with 10 pM TGF-beta1, endometrial epithelial cells derived from endometrial carcinomas (ECAs; n = 10) were unresponsive (P < or = 0.0066). To determine the mechanism of TGF-beta resistance in ECAs, we analyzed the TGF-beta signaling pathway in vivo by immunohistochemistry using specific antibodies to TbetaRI and TbetaRII, Smads, and to the phosphorylated form of Smad2 (Smad2P), an indicator of cells responding to bioactive TGF-beta. Smad2P was expressed in all of the normal endometria (n = 25), and was localized to the cytoplasm and nucleus in PE, and only nuclear in the secretory endometrium. In marked contrast, Smad2P immunostaining was weak or undetectable in ECA (n = 22; P < or = 0.001) and reduced in glandular hyperplasia (n = 25) compared with normal endometrium. However, total Smad2 and Smad7 (which inhibits Smad2 activation) levels were identical in ECA and normal tissue. Consistent with loss of downstream signaling, both TbetaRI (n = 19) and TbetaRII (n = 22) protein expression were significantly reduced in ECA compared with PE (n = 11; P < or = 0.05). By in situ hybridization, the mRNA levels of TbetaRI and TbetaRII were decreased in the carcinoma cells compared with normal PE glands, suggesting that receptor down-regulation occurs at the transcriptional level. Furthermore, a somatic frameshift mutation in the polyadenine tract at the 5' end of the TbetaR-II gene was detected in two of six cases examined. Finally, the ability of explants of ECA to activate endogenous LTGF-beta was deficient compared with normal tissue (23.5% versus 7.4%). Therefore, our results suggest that loss of Smad2 signaling in ECA may be because of down-regulation of TbetaRI and TbetaRII, and/or decreased activation of LTGF-beta. Because disruption of TGF-beta signaling occurred independent of grade or degree of invasion and was evident in premalignant hyperplasia, we conclude that inactivation of TGF-beta signaling leading to escape from normal growth control occurs at an early stage in endometrial carcinogenesis, thereby defining novel molecular targets for cancer prevention
PMID: 12019154
ISSN: 0008-5472
CID: 32907
The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1
Mu, Dezhi; Cambier, Stephanie; Fjellbirkeland, Lars; Baron, Jody L; Munger, John S; Kawakatsu, Hisaaki; Sheppard, Dean; Broaddus, V Courtney; Nishimura, Stephen L
Integrins, matrix metalloproteases (MMPs), and the cytokine TGF-beta have each been implicated in homeostatic cell behaviors such as cell growth and matrix remodeling. TGF-beta exists mainly in a latent state, and a major point of homeostatic control is the activation of TGF-beta. Because the latent domain of TGF-beta1 possesses an integrin binding motif (RGD), integrins have the potential to sequester latent TGF-beta (SLC) to the cell surface where TGF-beta activation could be locally controlled. Here, we show that SLC binds to alpha(v)beta8, an integrin expressed by normal epithelial and neuronal cells in vivo. This binding results in the membrane type 1 (MT1)-MMP-dependent release of active TGF-beta, which leads to autocrine and paracrine effects on cell growth and matrix production. These data elucidate a novel mechanism of cellular homeostasis achieved through the coordination of the activities of members of three major gene families involved in cell-matrix interactions
PMCID:2173277
PMID: 11970960
ISSN: 0021-9525
CID: 28181
The integrin alphaVbeta6 binds and activates latent TGFbeta3
Annes, Justin P; Rifkin, Daniel B; Munger, John S
Transforming growth factors-beta (TGFbeta1, 2 and 3) are secreted in a complex with their propeptides (latency-associated peptide 1 (LAP1), 2 and 3). TGFbeta signaling requires the dissociation of LAP and TGFbeta, a process termed latent TGFbeta activation. This process is a critical but incompletely understood step in the regulation of TGFbeta function. In particular, the extent to which activation mechanisms differ among the three TGFbeta isoforms is relatively unexplored. We show here that alphaVbeta6 binds and activates latent TGFbeta3
PMID: 11821050
ISSN: 0014-5793
CID: 28180
Measurement of active TGF-beta generated by cultured cells
Mazzieri R; Munger JS; Rifkin DB
PMID: 10806610
ISSN: 1064-3745
CID: 11706
The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis
Munger JS; Huang X; Kawakatsu H; Griffiths MJ; Dalton SL; Wu J; Pittet JF; Kaminski N; Garat C; Matthay MA; Rifkin DB; Sheppard D
Transforming growth factor beta (TGF beta) family members are secreted in inactive complexes with a latency-associated peptide (LAP), a protein derived from the N-terminal region of the TGF beta gene product. Extracellular activation of these complexes is a critical but incompletely understood step in regulation of TGF beta function in vivo. We show that TGF beta 1 LAP is a ligand for the integrin alpha v beta 6 and that alpha v beta 6-expressing cells induce spatially restricted activation of TGF beta 1. This finding explains why mice lacking this integrin develop exaggerated inflammation and, as we show, are protected from pulmonary fibrosis. These data identify a novel mechanism for locally regulating TGF beta 1 function in vivo by regulating expression of the alpha v beta 6 integrin
PMID: 10025398
ISSN: 0092-8674
CID: 7411
Proteolytic control of growth factor availability
Rifkin DB; Mazzieri R; Munger JS; Noguera I; Sung J
Most growth factors are released from cells in a form that does not permit immediate interaction with their high affinity receptors. An important mechanism for presentation of these released latent growth factors is activation by the plasminogen activator-plasmin system. The involvement of this system in the biology of Transforming Growth Factor-beta (TGF-beta) is reviewed
PMID: 10190283
ISSN: 0903-4641
CID: 6074
Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alphavbeta1
Munger JS; Harpel JG; Giancotti FG; Rifkin DB
The multipotential cytokine transforming growth factor-beta (TGF-beta) is secreted in a latent form. Latency results from the noncovalent association of TGF-beta with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-beta-binding protein (LTBP) produces the most common form of latent TGF-beta, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-beta. LTBP and the LAP propeptides of TGF-beta (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-beta function in the ECM, we determined whether latent TGF-beta1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits alphav and beta1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. alphavbeta1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of alphavbeta5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was alphavbeta1 dependent. These results establish alphavbeta1 as a LAP-beta1 receptor. Interactions between latent TGF-beta and alphavbeta1 may localize latent TGF-beta to the surface of specific cells and may allow the TGF-beta1 gene product to initiate signals by both TGF-beta receptor and integrin pathways
PMCID:25536
PMID: 9725916
ISSN: 1059-1524
CID: 12078
Latent transforming growth factor-beta: structural features and mechanisms of activation
Munger JS; Harpel JG; Gleizes PE; Mazzieri R; Nunes I; Rifkin DB
Transforming growth factor-beta are cytokines with a wide range of biological effects. They play a pathologic role in inflammatory and fibrosing diseases such as nephrosclerosis. TGF-beta s are secreted in a latent form due to noncovalent association with latency associated peptide (LAP), which is a homodimer formed from the propeptide region of TGF-beta. LAP is disulfide linked to another protein, latent TGF-beta binding protein (LTBP). LTBP has features in common with extracellular matrix proteins, and targets latent TGF-beta to the matrix. Activation of latent TGF-beta can be accomplished in vitro by denaturing treatments, plasmin digestion, ionizing radiation and interaction with thrombospondin. The mechanisms by which latent TGF-beta is activated physiologically are not well understood. Results to date suggest an important role for proteases, particularly plasmin, although other mechanisms probably exist. A general model of activation is proposed in which latent TGF-beta is released from the extracellular matrix by proteases, localized to cell surfaces, and activated by cell-associated plasmin
PMID: 9150447
ISSN: 0085-2538
CID: 35177
Plasminogen/plasminogen activator and growth factor activation
Rifkin DB; Gleizes PE; Harpel J; Nunes I; Munger J; Mazzieri R; Noguera I
The plasminogen/plasminogen activator system is widely used in extracellular proteolysis. In this review the involvement of this system in tumour invasion, cell migration, growth factor presentation and inhibition of angiogenesis are discussed
PMID: 9524766
ISSN: 0300-5208
CID: 12147