Searched for: in-biosketch:true
person:orrind01
Association of hyperglycemia and molecular subclass on survival in IDH-wildtype glioblastoma
Liu, Elisa K; Vasudevaraja, Varshini; Sviderskiy, Vladislav O; Feng, Yang; Tran, Ivy; Serrano, Jonathan; Cordova, Christine; Kurz, Sylvia C; Golfinos, John G; Sulman, Erik P; Orringer, Daniel A; Placantonakis, Dimitris; Possemato, Richard; Snuderl, Matija
BACKGROUND/UNASSIGNED:Hyperglycemia has been associated with worse survival in glioblastoma. Attempts to lower glucose yielded mixed responses which could be due to molecularly distinct GBM subclasses. METHODS/UNASSIGNED:Clinical, laboratory, and molecular data on 89 IDH-wt GBMs profiled by clinical next-generation sequencing and treated with Stupp protocol were reviewed. IDH-wt GBMs were sub-classified into RTK I (Proneural), RTK II (Classical) and Mesenchymal subtypes using whole-genome DNA methylation. Average glucose was calculated by time-weighting glucose measurements between diagnosis and last follow-up. RESULTS/UNASSIGNED:= .02). Methylation clustering did not identify unique signatures associated with high or low glucose levels. Metabolomic analysis of 23 tumors showed minimal variation across metabolites without differences between molecular subclasses. CONCLUSION/UNASSIGNED:Higher average glucose values were associated with poorer OS in RTKI and Mesenchymal IDH-wt GBM, but not RTKII. There were no discernible epigenetic or metabolomic differences between tumors in different glucose environments, suggesting a potential survival benefit to lowering systemic glucose in selected molecular subtypes.
PMCID:9653172
PMID: 36382106
ISSN: 2632-2498
CID: 5384812
Clinical value of DNA methylation in practice: A prospective molecular neuropathology study [Meeting Abstract]
Galbraith, Kristyn; Shen, Guomiao; Serrano, Jonathan; Vasudevaraja, Varshini; Tran, Ivy; Movahed-Ezazi, Misha; Harter, David; Hidalgo, Eveline; Wisoff, Jeffrey; Orringer, Daniel; Placantonakis, Dimitris; Gardner, Sharon; William, Christopher; Zagzag, David; Allen, Jeffrey; Sulman, Erik; Golfinos, John; Snuderl, Matija
ISI:000798368400125
ISSN: 0022-3069
CID: 5244322
Clinical Validation of Stimulated Raman Histology for Rapid Intraoperative Diagnosis of CNS Tumors [Meeting Abstract]
Movahed-Ezazi, Misha; Nasir-moin, Mustafa; Fang, Camila; Pizzillo, Isabella; Galbraith, Kristyn; Krasnozhen, Olga; Schroff, Seema; Drexler, Steven; William, Christopher; Zagzag, David; Orringer, Daniel; Snuderl, Matija
ISI:000798368400131
ISSN: 0022-3069
CID: 5244332
Stimulated Raman Spectroscopy as Rapid On-site Evaluation of Renal Neoplastic and Non-neoplastic Biopsies [Meeting Abstract]
Ren, Joyce; Mannas, Miles; Jones, Derek; Orringer, Daniel; Taneja, Samir; Deng, Fang-Ming
ISI:000770360203144
ISSN: 0023-6837
CID: 5243232
Stimulated Raman Spectroscopy as Rapid On-site Evaluation of Renal Neoplastic and Non-neoplastic Biopsies [Meeting Abstract]
Ren, Joyce; Mannas, Miles; Jones, Derek; Orringer, Daniel; Taneja, Samir; Deng, Fang-Ming
ISI:000770361803144
ISSN: 0893-3952
CID: 5243372
Clinical Translation of Stimulated Raman Histology
Orillac, Cordelia; Hollon, Todd; Orringer, Daniel A
Stimulated Raman histology (SRH) images are created by the label-free, nondestructive imaging of tissue using stimulated Raman scattering (SRS) microscopy. In a matter of seconds, these images provide real-time histologic information on biopsied tissue in the operating room. SRS microscopy uses two lasers (pump beam and Stokes beam) to amplify the Raman signal of specific chemical bonds found in macromolecules (lipids, proteins, and nucleic acids) in these tissues. The concentrations of these macromolecules are used to produce image contrast. These images are acquired and displayed using an imaging system with five main components: (1) fiber coupled microscope, (2) dual-wavelength fiber-laser module, (3) laser control module, (4) microscope control module, and (5) a computer. This manuscript details how to assemble the dual-wavelength fiber-laser module and how to generate an SRH image.
PMID: 34837182
ISSN: 1940-6029
CID: 5063952
Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection
Orillac, Cordelia; Stummer, Walter; Orringer, Daniel A
Safely maximizing extent of resection has become the central goal in glioma surgery. Especially in eloquent cortex, the goal of maximal resection is balanced with neurological risk. As new technologies emerge in the field of neurosurgery, the standards for maximal safe resection have been elevated. Fluorescence-guided surgery, intraoperative magnetic resonance imaging, and microscopic imaging methods are among the most well-validated tools available to enhance the level of accuracy and safety in glioma surgery. Each technology uses a different characteristic of glioma tissue to identify and differentiate tumor tissue from normal brain and is most effective in the context of anatomic, connectomic, and neurophysiologic context. While each tool is able to enhance resection, multiple modalities are often used in conjunction to achieve maximal safe resection. This paper reviews the mechanism and utility of the major adjuncts available for use in glioma surgery, especially in tumors within eloquent areas, and puts forth the foundation for a unified approach to how leverage currently available technology to ensure maximal safe resection.
PMCID:8510852
PMID: 33289518
ISSN: 1524-4040
CID: 5045742
Neurosurgical Advances for Malignant Gliomas: Intersection of Biology and Technology
Dastagirzada, Yosef; Suryadevara, Carter; Weiss, Hannah; Orringer, Daniel
ABSTRACT:The intersection of biology and technology has led to many advancements for the field of neurosurgery. Molecular developments have led to the identification of specific mutations, allowing for more accurate discussions in regard to prognosis and treatment effect. Even amid the progress from basic science benchwork, malignant gliomas continue to have a bleak natural history in lieu of the resistance to chemotherapy and the diffuse nature of the disease, leaving room for further research to discover more effective treatment modalities. Novel imaging methods, including the emerging field of radiogenomics, involve the merging of molecular and radiographic data, enabling earlier, detailed molecular diagnoses and improved surveillance of this pathology. Furthermore, surgical advancements have led to safer and more extensive resections. This review aims to delineate the various advancements in the many facets that are used daily in the care of our glioma population, specifically pertaining to its biology, imaging modalities, and perioperative adjuncts used in the operating room.
PMID: 34570450
ISSN: 1540-336x
CID: 5039732
Re-evaluating Biopsy for Recurrent Glioblastoma: A Position Statement by the Christopher Davidson Forum Investigators
Nduom, Edjah K; Gephart, Melanie Hayden; Chheda, Milan G; Suva, Mario L; Amankulor, Nduka; Battiste, James D; Campian, Jian L; Dacey, Ralph G; Das, Sunit; Fecci, Peter E; Hadjipanayis, Constantinos G; Hoang, Kimberly B; Jalali, Ali; Orringer, Daniel; Patel, Akash J; Placantonakis, Dimitris; Rodriguez, Analiz; Yang, Isaac; Yu, Jennifer S; Zipfel, Greg J; Dunn, Gavin P; Leuthardt, Eric C; Kim, Albert H
Patients with glioblastoma (GBM) need bold new approaches to their treatment, yet progress has been hindered by a relative inability to dynamically track treatment response, mechanisms of resistance, evolution of targetable mutations, and changes in mutational burden. We are writing on behalf of a multidisciplinary group of academic neuro-oncology professionals who met at the collaborative Christopher Davidson Forum at Washington University in St Louis in the fall of 2019. We propose a dramatic but necessary change to the routine management of patients with GBM to advance the field: to routinely biopsy recurrent GBM at the time of presumed recurrence. Data derived from these samples will identify true recurrence vs treatment effect, avoid treatments with little chance of success, enable clinical trial access, and aid in the scientific advancement of our understanding of GBM.
PMID: 33862619
ISSN: 1524-4040
CID: 4924052
Functional connectivity of the default mode, dorsal attention and fronto-parietal executive control networks in glial tumor patients
Tordjman, Mickael; Madelin, Guillaume; Gupta, Pradeep Kumar; Cordova, Christine; Kurz, Sylvia C; Orringer, Daniel; Golfinos, John; Kondziolka, Douglas; Ge, Yulin; Wang, Ruoyu Luie; Lazar, Mariana; Jain, Rajan
PURPOSE/OBJECTIVE:Resting state functional magnetic resonance imaging (rsfMRI) is an emerging tool to explore the functional connectivity of different brain regions. We aimed to assess the disruption of functional connectivity of the Default Mode Network (DMN), Dorsal Attention Network(DAN) and Fronto-Parietal Network (FPN) in patients with glial tumors. METHODS:rsfMRI data acquired on 3T-MR of treatment-naive glioma patients prospectively recruited (2015-2019) and matched controls from the 1000 functional-connectomes-project were analyzed using the CONN functional toolbox. Seed-Based Connectivity Analysis (SBCA) and Independent Component Analysis (ICA, with 10 to 100 components) were performed to study reliably the three networks of interest. RESULTS:). For the FPN, increased connectivity was noted in the precuneus, posterior cingulate gyrus, and frontal cortex. No difference in the connectivity of the networks of interest was demonstrated between low- and high-grade gliomas, as well as when stratified by their IDH1-R132H (isocitrate dehydrogenase) mutation status. CONCLUSION/CONCLUSIONS:Altered functional connectivity is reliably found with SBCA and ICA in the DMN, DAN, and FPN in glioma patients, possibly explained by decreased connectivity between the cerebral hemispheres across the corpus callosum due to disruption of the connections.
PMID: 33528739
ISSN: 1573-7373
CID: 4789692