Try a new search

Format these results:

Searched for:

in-biosketch:true

person:bls322

Total Results:

232


A Pre-Existing Myogenic Temporomandibular Disorder Increases Trigeminal Calcitonin Gene-Related Peptide and Enhances Nitroglycerin-Induced Hypersensitivity in Mice

Shu, Hui; Liu, Sufang; Tang, Yuanyuan; Schmidt, Brian L; Dolan, John C; Bellinger, Larry L; Kramer, Phillip R; Bender, Steven D; Tao, Feng
Migraine is commonly reported among patients with temporomandibular disorders (TMDs), especially myogenic TMD. The pathophysiologic mechanisms related to the comorbidity of the two conditions remain elusive. In the present study, we combined masseter muscle tendon ligation (MMTL)-produced myogenic TMD with systemic injection of nitroglycerin (NTG)-induced migraine-like hypersensitivity in mice. Facial mechanical allodynia, functional allodynia, and light-aversive behavior were evaluated. Sumatriptan, an FDA-approved medication for migraine, was used to validate migraine-like hypersensitivity. Additionally, we examined the protein level of calcitonin gene-related peptide (CGRP) in the spinal trigeminal nucleus caudalis using immunohistochemistry. We observed that mice with MMTL pretreatment have a prolonged NTG-induced migraine-like hypersensitivity, and MMTL also enabled a non-sensitizing dose of NTG to trigger migraine-like hypersensitivity. Systemic injection of sumatriptan inhibited the MMTL-enhanced migraine-like hypersensitivity. MMTL pretreatment significantly upregulated the protein level of CGRP in the spinal trigeminal nucleus caudalis after NTG injection. Our results indicate that a pre-existing myogenic TMD can upregulate NTG-induced trigeminal CGRP and enhance migraine-like hypersensitivity.
PMID: 32516986
ISSN: 1422-0067
CID: 4490462

Evoked and spontaneous pain assessment during tooth pulp injury

Rossi, Heather Lynn; See, Lily Pachanin; Foster, William; Pitake, Saumitra; Gibbs, Jennifer; Schmidt, Brian; Mitchell, Claire H; Abdus-Saboor, Ishmail
Injury of the tooth pulp is excruciatingly painful and yet the receptors and neural circuit mechanisms that transmit this form of pain remain poorly defined in both the clinic and preclinical rodent models. Easily quantifiable behavioral assessment in the mouse orofacial area remains a major bottleneck in uncovering molecular mechanisms that govern inflammatory pain in the tooth. In this study we sought to address this problem using the Mouse Grimace Scale and a novel approach to the application of mechanical Von Frey hair stimuli. We use a dental pulp injury model that exposes the pulp to the outside environment, a procedure we have previously shown produces inflammation. Using RNAscope technology, we demonstrate an upregulation of genes that contribute to the pain state in the trigeminal ganglia of injured mice. We found that mice with dental pulp injury have greater Mouse Grimace Scores than sham within 24 hours of injury, suggestive of spontaneous pain. We developed a scoring system of mouse refusal to determine thresholds for mechanical stimulation of the face with Von Frey filaments. This method revealed that mice with a unilateral dental injury develop bilateral mechanical allodynia that is delayed relative to the onset of spontaneous pain. This work demonstrates that tooth pain can be quantified in freely behaving mice using approaches common for other types of pain assessment. Harnessing these assays in the orofacial area during gene manipulation should assist in uncovering mechanisms for tooth pulp inflammatory pain and other forms of trigeminal pain.
PMID: 32066827
ISSN: 2045-2322
CID: 4313012

Oral cancer pain mediators released in exosomes are oncogenes with potential to shape the microenvironment and induce neuronal sensitivity [Meeting Abstract]

Bhattacharya, Aditi; Dubeykoskaya, Zinaida; Nguyen, Huu Tu; Dolgalev, Igor; Veeramachaneni, Ratna; Schmidt, Brian L.; Albertson, Donna G.
ISI:000590059302069
ISSN: 0008-5472
CID: 4820802

The Impact Of Head And Neck Cancer Radiotherapy On Salivary Flow And Quality Of Life: Results Of The OraRad Study [Meeting Abstract]

Lin, A.; Helgeson, E.; Treister, N.; Schmidt, B.; Patton, L.; Elting, L.; Lalla, R.; Brennan, M.; Sollecito, T.
ISI:000582521502584
ISSN: 0360-3016
CID: 4696062

A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain

Ramírez-García, Paulina D; Retamal, Jeffri S; Shenoy, Priyank; Imlach, Wendy; Sykes, Matthew; Truong, Nghia; Constandil, Luis; Pelissier, Teresa; Nowell, Cameron J; Khor, Song Y; Layani, Louis M; Lumb, Chris; Poole, Daniel P; Lieu, TinaMarie; Stewart, Gregory D; Mai, Quynh N; Jensen, Dane D; Latorre, Rocco; Scheff, Nicole N; Schmidt, Brian L; Quinn, John F; Whittaker, Michael R; Veldhuis, Nicholas A; Davis, Thomas P; Bunnett, Nigel W
Nanoparticle-mediated drug delivery is especially useful for targets within endosomes because of the endosomal transport mechanisms of many nanomedicines within cells. Here, we report the design of a pH-responsive, soft polymeric nanoparticle for the targeting of acidified endosomes to precisely inhibit endosomal signalling events leading to chronic pain. In chronic pain, the substance P (SP) neurokinin 1 receptor (NK1R) redistributes from the plasma membrane to acidified endosomes, where it signals to maintain pain. Therefore, the NK1R in endosomes provides an important target for pain relief. The pH-responsive nanoparticles enter cells by clathrin- and dynamin-dependent endocytosis and accumulate in NK1R-containing endosomes. Following intrathecal injection into rodents, the nanoparticles, containing the FDA-approved NK1R antagonist aprepitant, inhibit SP-induced activation of spinal neurons and thus prevent pain transmission. Treatment with the nanoparticles leads to complete and persistent relief from nociceptive, inflammatory and neuropathic nociception and offers a much-needed non-opioid treatment option for chronic pain.
PMID: 31686009
ISSN: 1748-3395
CID: 4172382

Application of a chemical probe to detect neutrophil elastase activation during inflammatory bowel disease

Anderson, Bethany M; Poole, Daniel P; Aurelio, Luigi; Ng, Garrett Z; Fleischmann, Markus; Kasperkiewicz, Paulina; Morissette, Celine; Drag, Marcin; van Driel, Ian R; Schmidt, Brian L; Vanner, Stephen J; Bunnett, Nigel W; Edgington-Mitchell, Laura E
Neutrophil elastase is a serine protease that has been implicated in the pathogenesis of inflammatory bowel disease. Due to post-translational control of its activation and high expression of its inhibitors in the gut, measurements of total expression poorly reflect the pool of active, functional neutrophil elastase. Fluorogenic substrate probes have been used to measure neutrophil elastase activity, though these tools lack specificity and traceability. PK105 is a recently described fluorescent activity-based probe, which binds to neutrophil elastase in an activity-dependent manner. The irreversible nature of this probe allows for accurate identification of its targets in complex protein mixtures. We describe the reactivity profile of PK105b, a new analogue of PK105, against recombinant serine proteases and in tissue extracts from healthy mice and from models of inflammation induced by oral cancer and Legionella pneumophila infection. We apply PK105b to measure neutrophil elastase activation in an acute model of experimental colitis. Neutrophil elastase activity is detected in inflamed, but not healthy, colons. We corroborate this finding in mucosal biopsies from patients with ulcerative colitis. Thus, PK105b facilitates detection of neutrophil elastase activity in tissue lysates, and we have applied it to demonstrate that this protease is unequivocally activated during colitis.
PMID: 31527638
ISSN: 2045-2322
CID: 4097682

Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2

Zhao, Peishen; Pattison, Luke A; Jensen, Dane D; Jimenez-Vargas, Nestor N; Latorre, Rocco; Lieu, TinaMarie; Jaramillo, Josue O; Lopez-Lopez, Cintya; Poole, Daniel P; Vanner, Stephen J; Schmidt, Brian L; Bunnett, Nigel W
Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and β-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or β-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gβγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gβγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gβγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.
PMCID:6615677
PMID: 31142616
ISSN: 1083-351x
CID: 4009732

Oral cancer derived tumor necrosis factor alpha (TNFalpha) activates Schwann cells to amplify pain [Meeting Abstract]

Salvo, E; Nguyen, T; Scheff, N; Schmidt, B; Albertson, D; Dolan, J; Ye, Y
Pain is rated by oral cancer patients as the worst symptom and significantly impairs a patient's ability to eat, talk, and drink. Mediators, secreted from oral cancer microenvironment, excite primary afferent neurons, which in turn generate pain. Oral cancer cells release TNFalpha which induces acute inflammation and nociception in mice. We hypothesize that TNFalpha activates Schwann cells to amplify pain signals. First, we confirmed the involvement of TNFalpha in oral cancer pain in patients and animal models. We found that oral cancer tissues collected from patients have higher TNFalpha concentration compared to anatomically matched normal tissues. Differences in TNFalpha concentration between the tumor and anatomically matched normal tissues correlate positively with total pain scores. In a Nitroquinoline 1-oxide (4NQO) mouse oral cancer model we demonstrated reduced mechanical hypersensitivity (P<0.05, N=8) with the dolognawmeter gnawing assay when TNFalpha was neutralized with C-87. Using a non-contact co-culture model, we found that HSC-3 cells induced a more activated human primary Schwann cells phenotype with increased proliferation (P<0.05) and migration (P<0.05); introduction of C-87 in the co-culture reduced Schwann cell proliferation (P<0.05) and migration (P<0.05) induced by HSC-3 cells. After removal of the co-cultured cancer cells, cancer-activated Schwann cells secrete greater amounts of TNFalpha and nerve growth factor (NGF), another known nociceptive mediator in the oral cancer microenvironment, compared to Schwann cells initially co-cultured with DOK (P<0.05) or naive Schwann cells (P<0.05). To determine whether activated Schwann cells mediate oral cancer pain, we cultured Schwann cells in hypoxic conditions - a known cancer stimulus that induces robust Schwann cell activation. Schwann cell supernatant was then collected and injected into the mouse cheek. Supernatant from hypoxia-activated Schwann cells induced greater facial allodynia (measured with von Frey filaments) in mice (P<0.05, N=7), compared to supernatant from Schwann cells cultured in normoxic conditions (N=5). C-87 significantly reduced facial allodynia caused by hypoxiaactivated Schwann cells (P<0.05, N=5). We infer from our results that TNFalpha plays a role in the activation of Schwann cells and that cancer-activated Schwann cells are a source of nociceptive mediators in the cancer microenvironment. Inhibition of Schwann cell activation might be clinically useful for alleviating oral cancer pain
EMBASE:629518016
ISSN: 1098-1136
CID: 4140962

G Protein-Coupled Receptors are Dynamic Regulators of Digestion and Targets for Digestive Diseases

Canals, Meritxell; Poole, Daniel P; Veldhuis, Nicholas A; Schmidt, Brian L; Bunnett, Nigel W
G protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins. Within the gastrointestinal tract, GPCRs expressed by epithelial cells sense contents of the lumen, and GPCRs expressed by epithelial cells, myocytes, neurons, and immune cells participate in communication amongst cells. GPCRs control digestion, mediate digestive diseases, and coordinate repair and growth. GPCRs are the target of over one third of therapeutic drugs, including many drugs used to treat digestive diseases. Recent advances in structural, chemical, and cell biology research have revealed that GPCRs are not static binary switches that operate from the plasma membrane to control a defined set of intracellular signals. Rather, GPCRs are dynamic signaling proteins that adopt distinct conformations and subcellular distributions when associated with different ligands and intracellular effectors. An understanding of the dynamic nature of GPCRs has provided insights into the mechanism of activation and signaling of GPCRs, and has revealed opportunities for drug discovery. We review the allosteric modulation, biased agonism, oligomerization, and compartmentalized signaling of GPCRs that control digestion and digestive diseases. We highlight the implications of these concepts for the development of selective and effective drugs to treat diseases of the gastrointestinal tract.
PMID: 30771352
ISSN: 1528-0012
CID: 3655912

Targeted TNF-α Overexpression Drives Salivary Gland Inflammation

Limaye, A; Hall, B E; Zhang, L; Cho, A; Prochazkova, M; Zheng, C; Walker, M; Adewusi, F; Burbelo, P D; Sun, Z J; Ambudkar, I S; Dolan, J C; Schmidt, B L; Kulkarni, A B
Chronic inflammation of the salivary glands from pathologic conditions such as Sjögren's syndrome can result in glandular destruction and hyposalivation. To understand which molecular factors may play a role in clinical cases of salivary gland hypofunction, we developed an aquaporin 5 (AQP5) Cre mouse line to produce genetic recombination predominantly within the acinar cells of the glands. We then bred these mice with the TNF-αglo transgenic line to develop a mouse model with salivary gland-specific overexpression of TNF-α; which replicates conditions seen in sialadenitis, an inflammation of the salivary glands resulting from infection or autoimmune disorders such as Sjögren's syndrome. The resulting AQP5-Cre/TNF-αglo mice display severe inflammation in the salivary glands with acinar cell atrophy, fibrosis, and dilation of the ducts. AQP5 expression was reduced in the salivary glands, while tight junction integrity appeared to be disrupted. The immune dysregulation in the salivary gland of these mice led to hyposalivation and masticatory dysfunction.
PMID: 30958728
ISSN: 1544-0591
CID: 3809552