Searched for: in-biosketch:true
person:chandh02
Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence
Shanbhogue, Krishna; Tong, Angela; Smereka, Paul; Nickel, Dominik; Arberet, Simon; Anthopolos, Rebecca; Chandarana, Hersh
OBJECTIVE:To compare the image quality of an accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction (DL HASTE-FS) with conventional T2-weighted FS sequence (conventional T2 FS) at 1.5 T. METHODS:One hundred consecutive patients who underwent clinical MRI of the liver at 1.5 T including the conventional T2-weighted fat-suppressed sequence (T2 FS) and accelerated single-shot T2-weighted MRI of the liver with deep learning-based image reconstruction (DL HASTE-FS) were included. Images were reviewed independently by three blinded observers who used a 5-point confidence scale for multiple measures regarding the artifacts and image quality. Descriptive statistics and McNemar's test were used to compare image quality scores and percentage of lesions detected by each sequence, respectively. Intra-class correlation coefficient (ICC) was used to assess consistency in reader scores. RESULTS:Acquisition time for DL HASTE-FS was 51.23 +/ 10.1 s, significantly (p < 0.001) shorter than conventional T2-FS (178.9 ± 85.3 s). DL HASTE-FS received significantly higher scores than conventional T2-FS for strength and homogeneity of fat suppression; sharpness of liver margin; sharpness of intra-hepatic vessel margin; in-plane and through-plane respiratory motion; other ghosting artefacts; liver-fat contrast; and overall image quality (all, p < 0.0001). DL HASTE-FS also received higher scores for lesion conspicuity and sharpness of lesion margin (all, p < .001), without significant difference for liver lesion contrast (p > 0.05). CONCLUSIONS:Accelerated single-shot T2-weighted MRI of the liver with deep learning-based image reconstruction showed superior image quality compared to the conventional T2-weighted fat-suppressed sequence despite a 4-fold reduction in acquisition time. KEY POINTS/CONCLUSIONS:• Conventional fat-suppressed T2-weighted sequence (conventional T2 FS) can take unacceptably long to acquire and is the most commonly repeated sequence in liver MRI due to motion. • DL HASTE-FS demonstrated superior image quality, improved respiratory motion and other ghosting artefacts, and increased lesion conspicuity with comparable liver-to-lesion contrast compared to conventional T2FS sequence. • DL HASTE- FS has the potential to replace conventional T2 FS sequence in routine clinical MRI of the liver, reducing the scan time, and improving the image quality.
PMID: 33961086
ISSN: 1432-1084
CID: 4866842
A workflow to generate patient-specific three-dimensional augmented reality models from medical imaging data and example applications in urologic oncology
Wake, Nicole; Rosenkrantz, Andrew B; Huang, William C; Wysock, James S; Taneja, Samir S; Sodickson, Daniel K; Chandarana, Hersh
Augmented reality (AR) and virtual reality (VR) are burgeoning technologies that have the potential to greatly enhance patient care. Visualizing patient-specific three-dimensional (3D) imaging data in these enhanced virtual environments may improve surgeons' understanding of anatomy and surgical pathology, thereby allowing for improved surgical planning, superior intra-operative guidance, and ultimately improved patient care. It is important that radiologists are familiar with these technologies, especially since the number of institutions utilizing VR and AR is increasing. This article gives an overview of AR and VR and describes the workflow required to create anatomical 3D models for use in AR using the Microsoft HoloLens device. Case examples in urologic oncology (prostate cancer and renal cancer) are provided which depict how AR has been used to guide surgery at our institution.
PMCID:8554989
PMID: 34709482
ISSN: 2365-6271
CID: 5042602
Assessment of Renal Cell Carcinoma by Texture Analysis in Clinical Practice: A Six-Site, Six-Platform Analysis of Reliability
Doshi, Ankur M; Tong, Angela; Davenport, Matthew S; Khalaf, Ahmed; Mresh, Rafah; Rusinek, Henry; Schieda, Nicola; Shinagare, Atul; Smith, Andrew D; Thornhill, Rebecca; Vikram, Raghunandan; Chandarana, Hersh
Background: Multiple commercial and open-source software applications are available for texture analysis. Nonstandard techniques can cause undesirable variability that impedes result reproducibility and limits clinical utility. Objective: The purpose of this study is to measure agreement of texture metrics extracted by 6 software packages. Methods: This retrospective study included 40 renal cell carcinomas with contrast-enhanced CT from The Cancer Genome Atlas and Imaging Archive. Images were analyzed by 7 readers at 6 sites. Each reader used 1 of 6 software packages to extract commonly studied texture features. Inter and intra-reader agreement for segmentation was assessed with intra-class correlation coefficients. First-order (available in 6 packages) and second-order (available in 3 packages) texture features were compared between software pairs using Pearson correlation. Results: Inter- and intra-reader agreement was excellent (ICC 0.93-1). First-order feature correlations were strong (r>0.8, p<0.001) between 75% (21/28) of software pairs for mean and standard deviation, 48% (10/21) for entropy, 29% (8/28) for skewness, and 25% (7/28) for kurtosis. Of 15 second-order features, only co-occurrence matrix correlation, grey-level non-uniformity, and run-length non-uniformity showed strong correlation between software packages (0.90-1, p<0.001). Conclusion: Variability in first and second order texture features was common across software configurations and produced inconsistent results. Standardized algorithms and reporting methods are needed before texture data can be reliably used for clinical applications. Clinical Impact: It is important to be aware of variability related to texture software processing and configuration when reporting and comparing outputs.
PMID: 33852355
ISSN: 1546-3141
CID: 4846082
Free-breathing radial imaging using a pilot-tone radiofrequency transmitter for detection of respiratory motion
Solomon, Eddy; Rigie, David S; Vahle, Thomas; Paška, Jan; Bollenbeck, Jan; Sodickson, Daniel K; Boada, Fernando E; Block, Kai Tobias; Chandarana, Hersh
PURPOSE/OBJECTIVE:To describe an approach for detection of respiratory signals using a transmitted radiofrequency (RF) reference signal called Pilot-Tone (PT) and to use the PT signal for creation of motion-resolved images based on 3D stack-of-stars imaging under free-breathing conditions. METHODS:This work explores the use of a reference RF signal generated by a small RF transmitter, placed outside the MR bore. The reference signal is received in parallel to the MR signal during each readout. Because the received PT amplitude is modulated by the subject's breathing pattern, a respiratory signal can be obtained by detecting the strength of the received PT signal over time. The breathing-induced PT signal modulation can then be used for reconstructing motion-resolved images from free-breathing scans. The PT approach was tested in volunteers using a radial stack-of-stars 3D gradient echo (GRE) sequence with golden-angle acquisition. RESULTS:Respiratory signals derived from the proposed PT method were compared to signals from a respiratory cushion sensor and k-space-center-based self-navigation under different breathing conditions. Moreover, the accuracy was assessed using a modified acquisition scheme replacing the golden-angle scheme by a zero-angle acquisition. Incorporating the PT signal into eXtra-Dimensional (XD) motion-resolved reconstruction led to improved image quality and clearer anatomical depiction of the lung and liver compared to k-space-center signal and motion-averaged reconstruction, when binned into 6, 8, and 10 motion states. CONCLUSION/CONCLUSIONS:PT is a novel concept for tracking respiratory motion. Its small dimension (8 cm), high sampling rate, and minimal interaction with the imaging scan offers great potential for resolving respiratory motion.
PMID: 33306216
ISSN: 1522-2594
CID: 4709402
Free-breathing abdominal T1 mapping using an optimized MR fingerprinting sequence
van Riel, Max H C; Yu, Zidan; Hodono, Shota; Xia, Ding; Chandarana, Hersh; Fujimoto, Koji; Cloos, Martijn A
In this work, we propose a free-breathing magnetic resonance fingerprinting (MRF) method that can be used to obtain B1+ -robust quantitative T1 maps of the abdomen in a clinically acceptable time. A three-dimensional MRF sequence with a radial stack-of-stars trajectory was implemented, and its k-space acquisition ordering was adjusted to improve motion-robustness in the context of MRF. The flip angle pattern was optimized using the Cramér-Rao Lower Bound, and the encoding efficiency of sequences with 300, 600, 900 and 1800 flip angles was evaluated. To validate the sequence, a movable multicompartment phantom was developed. Reference multiparametric maps were acquired under stationary conditions using a previously validated MRF method. Periodic motion of the phantom was used to investigate the motion-robustness of the proposed sequence. The best performing sequence length (600 flip angles) was used to image the abdomen during a free-breathing volunteer scan. When using a series of 600 or more flip angles, the estimated T1 values in the stationary phantom showed good agreement with the reference scan. Phantom experiments revealed that motion-related artifacts can appear in the quantitative maps and confirmed that a motion-robust k-space ordering is essential. The in vivo scan demonstrated that the proposed sequence can produce clean parameter maps while the subject breathes freely. Using this sequence, it is possible to generate B1+ -robust quantitative maps of T1 and B1+ next to M0 -weighted images under free-breathing conditions at a clinically usable resolution within 5 min.
PMID: 33902155
ISSN: 1099-1492
CID: 4852112
Impact of COVID-19 Workflow Changes on Patient Throughput at Outpatient Imaging Centers
Chang, Gregory; Doshi, Ankur; Chandarana, Hersh; Recht, Michael
RATIONALE AND OBJECTIVES/OBJECTIVE:To determine the impact of COVID-19 workflow changes on patient throughput at the outpatient imaging facilities of a large healthcare system in New York City. MATERIALS AND METHODS/METHODS:COVID-19 workflow changes to permit social distancing and patient and staff safety included screening at the time of scheduling, encouraging patients to use our digital platform to complete registration/safety forms prior to appointments, stationing screeners at all entrances, limiting waiting room capacity, implementing a texting system to notify patients of delays, limiting dressing room use by encouraging patients to wear exam-appropriate clothing, and accelerating MRI protocols without reducing image quality. We assessed patients' pre-exam wait times, MR exam times, overall time spent on site, and registration for and use of the digital portal before (February 2020) and after (June 2020) implementation of these measures. RESULTS:Across 17 outpatient imaging centers, workflow changes resulted in a 23.1% reduction (-6.8 minutes) in all patients' pre-exam wait times (p <0.00001). Pre-exam wait times for MRI, CT, ultrasound, x-ray, and mammography decreased 28.4% (-10.3 minutes), 16.5% (-6.7 minutes), 25.3% (-7.7 minutes), 22.8% (-3.7 minutes), and 23.9% (-5.0 minutes), respectively (p < 0.00001 for all). MR exam times decreased 9.7% (-3.5 minutes) and patients' overall time on site decreased 15.2% (-8.0 minutes). The proportions of patients actively using the digital patient portal (56.1%-70.1%) and completing forms electronically prior to arrival (24.9%-47.1%) increased (p < 0.0001 for both). CONCLUSION/CONCLUSIONS:Workflow changes necessitated by the COVID-19 pandemic to ensure safety of patients and staff have permitted higher outpatient throughput.
PMCID:7831631
PMID: 33516590
ISSN: 1878-4046
CID: 4775672
Visceral adipose tissue in patients with COVID-19: risk stratification for severity
Chandarana, Hersh; Dane, Bari; Mikheev, Artem; Taffel, Myles T; Feng, Yang; Rusinek, Henry
PURPOSE/OBJECTIVE:To assess visceral (VAT), subcutaneous (SAT), and total adipose tissue (TAT) estimates at abdominopelvic CT in COVID-19 patients with different severity, and analyze Body Mass Index (BMI) and CT estimates of fat content in patients requiring hospitalization. METHODS:to discriminate hospitalized patients from outpatients. RESULTS:in hospitalized patients compared to the outpatients (all p < 0.05). Area under the curve (AUC) of the clinical + CT model was higher compared to the clinical model (AUC 0.847 versus 0.750) for identifying patients requiring hospitalization. CONCLUSION/CONCLUSIONS:to the clinical model improved AUC in discriminating hospitalized from outpatients in this preliminary study.
PMCID:7398639
PMID: 32748252
ISSN: 2366-0058
CID: 4553822
Lexicon for renal mass terms at CT and MRI: a consensus of the society of abdominal radiology disease-focused panel on renal cell carcinoma
Shinagare, Atul B; Davenport, Matthew S; Park, Hyesun; Pedrosa, Ivan; Remer, Erick M; Chandarana, Hersh; Doshi, Ankur M; Schieda, Nicola; Smith, Andrew D; Vikram, Raghunandan; Wang, Zhen J; Silverman, Stuart G
PURPOSE/OBJECTIVE:There is substantial variation in the radiologic terms used to characterize renal masses, leading to ambiguity and inconsistency in clinical radiology reports and research studies. The purpose of this study was to develop a standardized lexicon to describe renal masses at CT and MRI. MATERIALS AND METHODS/METHODS:This multi-institutional, prospective, quality improvement project was exempt from IRB oversight. Thirteen radiologists belonging to the Society of Abdominal Radiology (SAR) disease-focused panel on renal cell carcinoma representing nine academic institutions participated in a modified Delphi process to create a lexicon of terms used to describe imaging features of renal masses at CT and MRI. In the first round, members voted on terms to be included and proposed definitions; subsequent voting rounds and a teleconference established consensus. One non-voting member developed the questionnaire and consolidated responses. Consensus was defined as ≥ 80% agreement. RESULTS:Of 37 proposed terms, 6 had consensus to be excluded. Consensus for inclusion was reached for 30 of 31 terms (13/14 basic imaging terms, 8/8 CT terms, 6/6 MRI terms and 3/3 miscellaneous terms). Despite substantial initial disagreement about definitions of 'renal mass,' 'necrosis,' 'fat,' and 'restricted diffusion' in the first round, consensus for all was eventually reached. Disagreement remained for the definition of 'solid mass.' CONCLUSIONS:A modified Delphi method produced a lexicon of preferred terms and definitions to be used in the description of renal masses at CT and MRI. This lexicon should improve clarity and consistency of radiology reports and research related to renal masses.
PMID: 32809055
ISSN: 2366-0058
CID: 4566772
Noninvasive Staging of Liver Fibrosis with Dual-Energy CT: Close but No Cigar [Comment]
Chandarana, Hersh; Shanbhogue, Krishna
PMID: 33404360
ISSN: 1527-1315
CID: 4738922
MRI guided procedure planning and 3D simulation for partial gland cryoablation of the prostate: a pilot study
Wake, Nicole; Rosenkrantz, Andrew B; Sodickson, Daniel K; Chandarana, Hersh; Wysock, James S
PURPOSE/OBJECTIVE:This study reports on the development of a novel 3D procedure planning technique to provide pre-ablation treatment planning for partial gland prostate cryoablation (cPGA). METHODS:Twenty men scheduled for partial gland cryoablation (cPGA) underwent pre-operative image segmentation and 3D modeling of the prostatic capsule, index lesion, urethra, rectum, and neurovascular bundles based upon multi-parametric MRI data. Pre-treatment 3D planning models were designed including virtual 3D cryotherapy probes to predict and plan cryotherapy probe configuration needed to achieve confluent treatment volume. Treatment efficacy was measured with 6 month post-operative MRI, serum prostate specific antigen (PSA) at 3 and 6 months, and treatment zone biopsy results at 6 months. Outcomes from 3D planning were compared to outcomes from a series of 20 patients undergoing cPGA using traditional 2D planning techniques. RESULTS:Forty men underwent cPGA. The median age of the cohort undergoing 3D treatment planning was 64.8 years with a median pretreatment PSA of 6.97 ng/mL. The Gleason grade group (GGG) of treated index lesions in this cohort included 1 (5%) GGG1, 11 (55%) GGG2, 7 (35%) GGG3, and 1 (5%) GGG4. Two (10%) of these treatments were post-radiation salvage therapies. The 2D treatment cohort included 20 men with a median age of 68.5 yrs., median pretreatment PSA of 6.76 ng/mL. The Gleason grade group (GGG) of treated index lesions in this cohort included 3 (15%) GGG1, 8 (40%) GGG2, 8 (40%) GGG3, 1 (5%) GGG4. Two (10%) of these treatments were post-radiation salvage therapies. 3D planning predicted the same number of cryoprobes for each group, however a greater number of cryoprobes was used in the procedure for the prospective 3D group as compared to that with 2D planning (4.10 ± 1.37 and 3.25 ± 0.44 respectively, p = 0.01). At 6 months post cPGA, the median PSA was 1.68 ng/mL and 2.38 ng/mL in the 3D and 2D cohorts respectively, with a larger decrease noted in the 3D cohort (75.9% reduction noted in 3D cohort and 64.8% reduction 2D cohort, p 0.48). In-field disease detection was 1/14 (7.1%) on surveillance biopsy in the 3D cohort and 3/14 (21.4%) in the 2D cohort, p = 0.056) In the 3D cohort, 6 month biopsy was not performed in 4 patients (20%) due to undetectable PSA, negative MRI, and negative MRI Axumin PET. For the group with traditional 2D planning, treatment zone biopsy was positive in 3/14 (21.4%) of the patients, p = 0.056. CONCLUSIONS:3D prostate cancer models derived from mpMRI data provide novel guidance for planning confluent treatment volumes for cPGA and predicted a greater number of treatment probes than traditional 2D planning methods. This study prompts further investigation into the use of 3D treatment planning techniques as the increase of partial gland ablation treatment protocols develop.
PMCID:7607830
PMID: 33141272
ISSN: 2365-6271
CID: 4655982