Searched for: in-biosketch:true
person:fritzj02
Deep Learning Diagnosis and Classification of Rotator Cuff Tears on Shoulder MRI
Lin, Dana J; Schwier, Michael; Geiger, Bernhard; Raithel, Esther; von Busch, Heinrich; Fritz, Jan; Kline, Mitchell; Brooks, Michael; Dunham, Kevin; Shukla, Mehool; Alaia, Erin F; Samim, Mohammad; Joshi, Vivek; Walter, William R; Ellermann, Jutta M; Ilaslan, Hakan; Rubin, David; Winalski, Carl S; Recht, Michael P
BACKGROUND:Detection of rotator cuff tears, a common cause of shoulder disability, can be time-consuming and subject to reader variability. Deep learning (DL) has the potential to increase radiologist accuracy and consistency. PURPOSE:The aim of this study was to develop a prototype DL model for detection and classification of rotator cuff tears on shoulder magnetic resonance imaging into no tear, partial-thickness tear, or full-thickness tear. MATERIALS AND METHODS:This Health Insurance Portability and Accountability Act-compliant, institutional review board-approved study included a total of 11,925 noncontrast shoulder magnetic resonance imaging scans from 2 institutions, with 11,405 for development and 520 dedicated for final testing. A DL ensemble algorithm was developed that used 4 series as input from each examination: fluid-sensitive sequences in 3 planes and a sagittal oblique T1-weighted sequence. Radiology reports served as ground truth for training with categories of no tear, partial tear, or full-thickness tear. A multireader study was conducted for the test set ground truth, which was determined by the majority vote of 3 readers per case. The ensemble comprised 4 parallel 3D ResNet50 convolutional neural network architectures trained via transfer learning and then adapted to the targeted domain. The final tear-type prediction was determined as the class with the highest probability, after averaging the class probabilities of the 4 individual models. RESULTS:The AUC overall for supraspinatus, infraspinatus, and subscapularis tendon tears was 0.93, 0.89, and 0.90, respectively. The model performed best for full-thickness supraspinatus, infraspinatus, and subscapularis tears with AUCs of 0.98, 0.99, and 0.95, respectively. Multisequence input demonstrated higher AUCs than single-sequence input for infraspinatus and subscapularis tendon tears, whereas coronal oblique fluid-sensitive and multisequence input showed similar AUCs for supraspinatus tendon tears. Model accuracy for tear types and overall accuracy were similar to that of the clinical readers. CONCLUSIONS:Deep learning diagnosis of rotator cuff tears is feasible with excellent diagnostic performance, particularly for full-thickness tears, with model accuracy similar to subspecialty-trained musculoskeletal radiologists.
PMID: 36728041
ISSN: 1536-0210
CID: 5502202
MRI in Acute Ankle Sprains: Should We Be More Aggressive with Indications?
Park, Eun Hae; de Cesar Netto, Cesar; Fritz, Jan
Acute ankle sprains are common sports injuries. MRI is the most accurate test for assessing the integrity and severity of ligament injuries in acute ankle sprains. However, MRI may not detect syndesmotic and hindfoot instability, and many ankle sprains are treated conservatively, questioning the value of MRI. In our practice, MRI adds value in confirming the absence or presence of ankle sprain-associated hindfoot and midfoot injuries, especially when clinical examinations are challenging, radiographs are inconclusive, and subtle instability is suspected. This article reviews and illustrates the MRI appearances of the spectrum of ankle sprains and associated hindfoot and midfoot injuries.
PMID: 37137621
ISSN: 1558-1934
CID: 5503062
The role of imaging in osteoarthritis
Park, Eun Hae; Fritz, Jan
Osteoarthritis is a complex whole-organ disorder that involves molecular, anatomic, and physiologic derangement. Advances in imaging techniques have expanded the role of imaging in evaluating osteoarthritis and functional changes. Radiography, magnetic resonance imaging, computed tomography (CT), and ultrasonography are commonly used imaging modalities, each with advantages and limitations in evaluating osteoarthritis. Radiography comprehensively analyses alignment and osseous features, while MRI provides detailed information about cartilage damage, bone marrow edema, synovitis, and soft tissue abnormalities. Compositional imaging derives quantitative data for detecting cartilage and tendon degeneration before structural damage occurs. Ultrasonography permits real-time scanning and dynamic joint evaluation, whereas CT is useful for assessing final osseous detail. Imaging plays an essential role in the diagnosis, management, and research of osteoarthritis. The use of imaging can help differentiate osteoarthritis from other diseases with similar symptoms, and recent advances in deep learning have made the acquisition, management, and interpretation of imaging data more efficient and accurate. Imaging is useful in monitoring and predicting the prognosis of osteoarthritis, expanding our understanding of its pathophysiology. Ultimately, this enables early detection and personalized medicine for patients with osteoarthritis. This article reviews the current state of imaging in osteoarthritis, focusing on the strengths and limitations of various imaging modalities, and introduces advanced techniques, including deep learning, applied in clinical practice.
PMID: 37659890
ISSN: 1532-1770
CID: 5618162
MRI-guided sacroiliac joint injections in children and adults: current practice and future developments
Dalili, Danoob; Isaac, Amanda; Fritz, Jan
Common etiologies of low back pain include degenerative arthrosis and inflammatory arthropathy of the sacroiliac joints. The diagnostic workup revolves around identifying and confirming the sacroiliac joints as a pain generator. Diagnostic sacroiliac joint injections often serve as functional additions to the diagnostic workup through eliciting a pain response that tests the hypothesis that the sacroiliac joints do or do not contribute to the patient's pain syndrome. Therapeutic sacroiliac joint injections aim to provide medium- to long-term relief of symptoms and reduce inflammatory activity and, ultimately, irreversible structural damage. Ultrasonography, fluoroscopy, computed tomography, and magnetic resonance imaging (MRI) may be used to guide sacroiliac joint injections. The populations that may benefit most from MRI-guided sacroiliac joint procedures include children, adolescents, adults of childbearing age, and patients receiving serial injections due to the ability of interventional MRI to avoid radiation exposure. Most clinical wide-bore MRI systems can be used for MRI-guided sacroiliac joint injections. Turbo spin echo pulse sequences optimized for interventional needle display visualize the needle tip with an error margin of < 1 mm or less. Published success rates of intra-articular sacroiliac joint drug delivery with MRI guidance range between 87 and 100%. The time required for MR-guided sacroiliac joint injections in adults range between 23-35 min and 40 min in children. In this article, we describe techniques for MRI-guided sacroiliac joint injections, share our practice of incorporating interventional MRI in the care of patients with sacroiliac joint mediated pain, discuss the rationales, benefits, and limitations of interventional MRI, and conclude with future developments.
PMID: 36006462
ISSN: 1432-2161
CID: 5331712
Musculoskeletal Ultrasonography-MR Imaging Correlation: A Key Component for Best Practice [Editorial]
Fritz, Jan
PMID: 37019555
ISSN: 1557-9786
CID: 5467062
Acute and Chronic Elbow Disorders: MR Imaging-Ultrasonography Correlation
Daniels, Steven P; Fritz, Jan
Elbow pain is very common and can be due to many pathologic conditions. After radiographs are obtained, advanced imaging is often necessary. Both ultrasonography and MR imaging can be used to evaluate the many important soft-tissue structures of the elbow, with each modality having advantages and disadvantages in certain clinical scenarios. Imaging findings between the two modalities often correlate. It is important for musculoskeletal radiologists to understand normal elbow anatomy and how best to use ultrasonography and MR imaging to evaluate elbow pain. In this way, radiologists can provide expert guidance to referring clinicians and best guide patient management.
PMID: 37019550
ISSN: 1557-9786
CID: 5467032
Musculoskeletal Soft-tissue Masses: MR imaging-Ultrasonography Correlation, with an Emphasis on the 2020 World Health Organization Classification
Burke, Christopher J; Fritz, Jan; Samim, Mohammad
Evaluation of soft-tissue masses has become a common clinical practice indication for imaging with both ultrasound and MR imaging. We illustrate the ultrasonography and MR imaging appearances of soft-tissue masses based on the various categories, updates, and reclassifications of the 2020 World Health Organization classification.
PMID: 37019551
ISSN: 1557-9786
CID: 5467042
MR Imaging-Ultrasonography Correlation of Acute and Chronic Foot and Ankle Conditions
Fritz, Benjamin; Fritz, Jan
Foot and ankle injuries are common musculoskeletal disorders. In the acute setting, ligamentous injuries are most common, whereas fractures, osseous avulsion injuries, tendon and retinaculum tears, and osteochondral injuries are less common. The most common chronic and overuse injuries include osteochondral and articular cartilage defects, tendinopathies, stress fractures, impingement syndromes, and neuropathies. Common forefoot conditions include traumatic and stress fractures, metatarsophalangeal and plantar plate injuries and degenerations, intermittent bursitis, and perineural fibrosis. Ultrasonography is well-suited for evaluating superficial tendons, ligaments, and muscles. MR imaging is best for deeper-located soft tissue structures, articular cartilage, and cancellous bone.
PMID: 37019553
ISSN: 1557-9786
CID: 5467052
[Imaging of hearing loss]
Fritz, Jan; Gohla, Georg; Horger, Marius; Baumgartner, Karolin; Heckl, Stefan
PMID: 36446579
ISSN: 1438-9010
CID: 5373962
Radiation Dose Reduction in Contrast-Enhanced Abdominal CT: Comparison of Photon-Counting Detector CT with 2nd Generation Dual-Source Dual-Energy CT in an oncologic cohort
Wrazidlo, Robin; Walder, Lukas; Estler, Arne; Gutjahr, Ralf; Schmidt, Bernhard; Faby, Sebastian; Fritz, Jan; Nikolaou, Konstantin; Horger, Marius; Hagen, Florian
RATIONAL AND OBJECTIVES/OBJECTIVE:Comparison of radiation dose and image quality in routine abdominal and pelvic contrast-enhanced computed tomography (CECT) between a photon-counting detector CT (PCD-CT) and a dual energy dual source CT (DSCT). MATERIALS AND METHODS/METHODS:), dose length product (DLP) and size-specific dose estimation (SSDE), objective and subjective measurements of image quality were scored by two emergency radiologists including lesion conspicuity. RESULTS:of T3D reconstructions from PCD-CT were significantly higher than those of DSCT (all, p < 0.05). Qualitative image noise analysis from PCD-CT and DSCT yielded a mean of 4 each. Lesion conspicuity was rated significantly higher in PCD-CT (Q3 strength) compared to DSCT images. CTDI, DLP and SSDE mean values for PCD-CT and DSCT were 7.98 ± 2.56 mGy vs. 14.11 ± 2.92 mGy, 393.13 ± 153.55 mGy*cm vs. 693.61 ± 185.76 mGy*cm and 9.98 ± 2.41 vs. 14.63 ± 1.63, respectively, translating to a dose reduction of around 32% (SSDE). CONCLUSION/CONCLUSIONS:-generation DSCT.
PMID: 35760710
ISSN: 1878-4046
CID: 5281072