Searched for: in-biosketch:true
person:oermae01
Pragmatic Prediction of Excessive Length of Stay After Cervical Spine Surgery With Machine Learning and Validation on a National Scale
Valliani, Aly A; Feng, Rui; Martini, Michael L; Neifert, Sean N; Kim, Nora C; Gal, Jonathan S; Oermann, Eric K; Caridi, John M
BACKGROUND:Extended postoperative hospital stays are associated with numerous clinical risks and increased economic cost. Accurate preoperative prediction of extended length of stay (LOS) can facilitate targeted interventions to mitigate clinical harm and resource utilization. OBJECTIVE:To develop a machine learning algorithm aimed at predicting extended LOS after cervical spine surgery on a national level and elucidate drivers of prediction. METHODS:Electronic medical records from a large, urban academic medical center were retrospectively examined to identify patients who underwent cervical spine fusion surgeries between 2008 and 2019 for machine learning algorithm development and in-sample validation. The National Inpatient Sample database was queried to identify cervical spine fusion surgeries between 2009 and 2017 for out-of-sample validation of algorithm performance. Gradient-boosted trees predicted LOS and efficacy was assessed using the area under the receiver operating characteristic curve (AUROC). Shapley values were calculated to characterize preoperative risk factors for extended LOS and explain algorithm predictions. RESULTS:Gradient-boosted trees accurately predicted extended LOS across cohorts, achieving an AUROC of 0.87 (SD = 0.01) on the single-center validation set and an AUROC of 0.84 (SD = 0.00) on the nationwide National Inpatient Sample data set. Anterior approach only, elective admission status, age, and total number of Elixhauser comorbidities were important predictors that affected the likelihood of prolonged LOS. CONCLUSION/CONCLUSIONS:Machine learning algorithms accurately predict extended LOS across single-center and national patient cohorts and characterize key preoperative drivers of increased LOS after cervical spine surgery.
PMID: 35834322
ISSN: 1524-4040
CID: 5269342
Neurosurgical Performance in the First 2 Years of Merit-Based Incentive Payment System: A Descriptive Analysis and Predictors of Receiving Bonus Payments
Neifert, Sean N; Cho, Logan D; Gal, Jonathan S; Martini, Michael L; Shuman, William H; Chapman, Emily K; Monterey, Michael; Oermann, Eric K; Caridi, John M
BACKGROUND:The merit-based incentive payment system (MIPS) program was implemented to tie Medicare reimbursements to value-based care measures. Neurosurgical performance in MIPS has not yet been described. OBJECTIVE:To characterize neurosurgical performance in the first 2 years of MIPS. METHODS:Publicly available data regarding MIPS performance for neurosurgeons in 2017 and 2018 were queried. Descriptive statistics about physician characteristics, MIPS performance, and ensuing payment adjustments were performed, and predictors of bonus payments were identified. RESULTS:There were 2811 physicians included in 2017 and 3147 in 2018. Median total MIPS scores (99.1 vs 90.4, P < .001) and quality scores (97.9 vs 88.5, P < .001) were higher in 2018 than in 2017. More neurosurgeons (2758, 87.6%) received bonus payments in 2018 than in 2017 (2013, 71.6%). Of the 2232 neurosurgeons with scores in both years, 1347 (60.4%) improved their score. Reporting through an alternative payment model (odds ratio [OR]: 32.3, 95% CI: 16.0-65.4; P < .001) and any practice size larger than 10 (ORs ranging from 2.37 to 10.2, all P < .001) were associated with receiving bonus payments. Increasing years in practice (OR: 0.99; 95% CI: 0.982-0.998, P = .011) and having 25% to 49% (OR: 0.72; 95% CI: 0.53-0.97; P = .029) or ≥50% (OR: 0.48; 95% CI: 0.28-0.82; P = .007) of a physician's patients eligible for Medicaid were associated with lower rates of bonus payments. CONCLUSION/CONCLUSIONS:Neurosurgeons performed well in MIPS in 2017 and 2018, although the program may be biased against surgeons who practice in small groups or take care of socially disadvantaged patients.
PMID: 35343468
ISSN: 1524-4040
CID: 5205932
Population scale latent space cohort matching for the improved use and exploration of observational trial data
Gologorsky, Rachel; Somani, Sulaiman S; Neifert, Sean N; Valliani, Aly A; Link, Katherine E; Chen, Viola J; Costa, Anthony B; Oermann, Eric K
A significant amount of clinical research is observational by nature and derived from medical records, clinical trials, and large-scale registries. While there is no substitute for randomized, controlled experimentation, such experiments or trials are often costly, time consuming, and even ethically or practically impossible to execute. Combining classical regression and structural equation modeling with matching techniques can leverage the value of observational data. Nevertheless, identifying variables of greatest interest in high-dimensional data is frequently challenging, even with application of classical dimensionality reduction and/or propensity scoring techniques. Here, we demonstrate that projecting high-dimensional medical data onto a lower-dimensional manifold using deep autoencoders and post-hoc generation of treatment/control cohorts based on proximity in the lower-dimensional space results in better matching of confounding variables compared to classical propensity score matching (PSM) in the original high-dimensional space (P<0.0001) and performs similarly to PSM models constructed by experts with prior knowledge of the underlying pathology when evaluated on predicting risk ratios from real-world clinical data. Thus, in cases when the underlying problem is poorly understood and the data is high-dimensional in nature, matching in the autoencoder latent space might be of particular benefit.
PMID: 35730283
ISSN: 1551-0018
CID: 5278662
Editorial. The future of stroke care is remote and now [Editorial]
Oermann, Eric K; Riina, Howard A
PMID: 34560649
ISSN: 1933-0693
CID: 5883382
Post-operative vision loss: analysis of 587 patients undergoing endoscopic surgery for pituitary macroadenoma
Rutland, John W; Dullea, Jonathan T; Oermann, Eric K; Feng, Rui; Villavisanis, Dillan F; Gilja, Shivee; Shuman, William; Lander, Travis; Govindaraj, Satish; Iloreta, Alfred M C; Chelnis, James; Post, Kalmon; Bederson, Joshua B; Shrivastava, Raj K
PURPOSE/UNASSIGNED:Vision loss following surgery for pituitary adenoma is poorly described in the literature and cannot be reliably predicted with current prognostic models. Detailed characterization of this population is warranted to further understand the factors that predispose a minority of patients to post-operative vision loss. MATERIALS AND METHODS/UNASSIGNED:The medical records of 587 patients who underwent endoscopic transsphenoidal surgery at the Mount Sinai Medical Centre between January 2013 and August 2018 were reviewed. Patients who experienced post-operative vision deterioration, defined by reduced visual acuity, worsened VFDs, or new onset of blurry vision, were identified and analysed. RESULTS/UNASSIGNED:Eleven out of 587 patients who received endoscopic surgery for pituitary adenoma exhibited post-operative vision deterioration. All eleven patients presented with preoperative visual impairment (average duration of 13.1 months) and pre-operative optic chiasm compression. Seven patients experienced visual deterioration within 24 h of surgery. The remaining four patients experienced delayed vision loss within one month of surgery. Six patients had complete blindness in at least one eye, one patient had complete bilateral blindness. Four patients had reduced visual acuity compared with preoperative testing, and four patients reported new-onset blurriness that was not present before surgery. High rates of graft placement (10/11 patients) and opening of the diaphragma sellae (9/11 patients) were found in this series. Four patients had hematomas and four patients had another significant post-operative complication. CONCLUSIONS/UNASSIGNED:While most patients with pituitary adenoma experience favourable ophthalmological outcomes following endoscopic transsphenoidal surgery, a subset of patients exhibit post-operative vision deterioration. The present study reports surgical and disease features of this population to further our understanding of factors that may underlie vision loss following pituitary adenoma surgery. Graft placement and opening of the diaphragma sellae may be important risk factors in vision loss following ETS and should be an area of future investigation.
PMID: 35264032
ISSN: 1360-046x
CID: 5190422
Rescue therapy for vasospasm following aneurysmal subarachnoid hemorrhage: a propensity score-matched analysis with machine learning
Martini, Michael L; Neifert, Sean N; Shuman, William H; Chapman, Emily K; Schüpper, Alexander J; Oermann, Eric K; Mocco, J; Todd, Michael; Torner, James C; Molyneux, Andrew; Mayer, Stephan; Roux, Peter Le; Vergouwen, Mervyn D I; Rinkel, Gabriel J E; Wong, George K C; Kirkpatrick, Peter; Quinn, Audrey; Hänggi, Daniel; Etminan, Nima; van den Bergh, Walter M; Jaja, Blessing N R; Cusimano, Michael; Schweizer, Tom A; Suarez, Jose I; Fukuda, Hitoshi; Yamagata, Sen; Lo, Benjamin; Leonardo de Oliveira Manoel, Airton; Boogaarts, Hieronymus D; Macdonald, R Loch; ,
OBJECTIVE:Rescue therapies have been recommended for patients with angiographic vasospasm (aVSP) and delayed cerebral ischemia (DCI) following subarachnoid hemorrhage (SAH). However, there is little evidence from randomized clinical trials that these therapies are safe and effective. The primary aim of this study was to apply game theory-based methods in explainable machine learning (ML) and propensity score matching to determine if rescue therapy was associated with better 3-month outcomes following post-SAH aVSP and DCI. The authors also sought to use these explainable ML methods to identify patient populations that were more likely to receive rescue therapy and factors associated with better outcomes after rescue therapy. METHODS:Data for patients with aVSP or DCI after SAH were obtained from 8 clinical trials and 1 observational study in the Subarachnoid Hemorrhage International Trialists repository. Gradient boosting ML models were constructed for each patient to predict the probability of receiving rescue therapy and the 3-month Glasgow Outcome Scale (GOS) score. Favorable outcome was defined as a 3-month GOS score of 4 or 5. Shapley Additive Explanation (SHAP) values were calculated for each patient-derived model to quantify feature importance and interaction effects. Variables with high SHAP importance in predicting rescue therapy administration were used in a propensity score-matched analysis of rescue therapy and 3-month GOS scores. RESULTS:The authors identified 1532 patients with aVSP or DCI. Predictive, explainable ML models revealed that aneurysm characteristics and neurological complications, but not admission neurological scores, carried the highest relative importance rankings in predicting whether rescue therapy was administered. Younger age and absence of cerebral ischemia/infarction were invariably linked to better rescue outcomes, whereas the other important predictors of outcome varied by rescue type (interventional or noninterventional). In a propensity score-matched analysis guided by SHAP-based variable selection, rescue therapy was associated with higher odds of 3-month GOS scores of 4-5 (OR 1.63, 95% CI 1.22-2.17). CONCLUSIONS:Rescue therapy may increase the odds of good outcome in patients with aVSP or DCI after SAH. Given the strong association between cerebral ischemia/infarction and poor outcome, trials focusing on preventative or therapeutic interventions in these patients may be most able to demonstrate improvements in clinical outcomes. Insights developed from these models may be helpful for improving patient selection and trial design.
PMID: 34214980
ISSN: 1933-0693
CID: 5883372
Development and Practical Implementation of a Deep Learning-Based Pipeline for Automated Pre- and Postoperative Glioma Segmentation
Lotan, E; Zhang, B; Dogra, S; Wang, W D; Carbone, D; Fatterpekar, G; Oermann, E K; Lui, Y W
BACKGROUND AND PURPOSE/OBJECTIVE:Quantitative volumetric segmentation of gliomas has important implications for diagnosis, treatment, and prognosis. We present a deep-learning model that accommodates automated preoperative and postoperative glioma segmentation with a pipeline for clinical implementation. Developed and engineered in concert, the work seeks to accelerate clinical realization of such tools. MATERIALS AND METHODS/METHODS:A deep learning model, autoencoder regularization-cascaded anisotropic, was developed, trained, and tested fusing key elements of autoencoder regularization with a cascaded anisotropic convolutional neural network. We constructed a dataset consisting of 437 cases with 40 cases reserved as a held-out test and the remainder split 80:20 for training and validation. We performed data augmentation and hyperparameter optimization and used a mean Dice score to evaluate against baseline models. To facilitate clinical adoption, we developed the model with an end-to-end pipeline including routing, preprocessing, and end-user interaction. RESULTS:The autoencoder regularization-cascaded anisotropic model achieved median and mean Dice scores of 0.88/0.83 (SD, 0.09), 0.89/0.84 (SD, 0.08), and 0.81/0.72 (SD, 0.1) for whole-tumor, tumor core/resection cavity, and enhancing tumor subregions, respectively, including both preoperative and postoperative follow-up cases. The overall total processing time per case was ∼10 minutes, including data routing (∼1 minute), preprocessing (∼6 minute), segmentation (∼1-2 minute), and postprocessing (∼1 minute). Implementation challenges were discussed. CONCLUSIONS:We show the feasibility and advantages of building a coordinated model with a clinical pipeline for the rapid and accurate deep learning segmentation of both preoperative and postoperative gliomas. The ability of the model to accommodate cases of postoperative glioma is clinically important for follow-up. An end-to-end approach, such as used here, may lead us toward successful clinical translation of tools for quantitative volume measures for glioma.
PMID: 34857514
ISSN: 1936-959x
CID: 5069232
Deploying deep learning models on unseen medical imaging using adversarial domain adaptation
Valliani, Aly A; Gulamali, Faris F; Kwon, Young Joon; Martini, Michael L; Wang, Chiatse; Kondziolka, Douglas; Chen, Viola J; Wang, Weichung; Costa, Anthony B; Oermann, Eric K
The fundamental challenge in machine learning is ensuring that trained models generalize well to unseen data. We developed a general technique for ameliorating the effect of dataset shift using generative adversarial networks (GANs) on a dataset of 149,298 handwritten digits and dataset of 868,549 chest radiographs obtained from four academic medical centers. Efficacy was assessed by comparing area under the curve (AUC) pre- and post-adaptation. On the digit recognition task, the baseline CNN achieved an average internal test AUC of 99.87% (95% CI, 99.87-99.87%), which decreased to an average external test AUC of 91.85% (95% CI, 91.82-91.88%), with an average salvage of 35% from baseline upon adaptation. On the lung pathology classification task, the baseline CNN achieved an average internal test AUC of 78.07% (95% CI, 77.97-78.17%) and an average external test AUC of 71.43% (95% CI, 71.32-71.60%), with a salvage of 25% from baseline upon adaptation. Adversarial domain adaptation leads to improved model performance on radiographic data derived from multiple out-of-sample healthcare populations. This work can be applied to other medical imaging domains to help shape the deployment toolkit of machine learning in medicine.
PMCID:9565422
PMID: 36240135
ISSN: 1932-6203
CID: 5352202
Federated learning for predicting clinical outcomes in patients with COVID-19
Dayan, Ittai; Roth, Holger R; Zhong, Aoxiao; Harouni, Ahmed; Gentili, Amilcare; Abidin, Anas Z; Liu, Andrew; Costa, Anthony Beardsworth; Wood, Bradford J; Tsai, Chien-Sung; Wang, Chih-Hung; Hsu, Chun-Nan; Lee, C K; Ruan, Peiying; Xu, Daguang; Wu, Dufan; Huang, Eddie; Kitamura, Felipe Campos; Lacey, Griffin; de Antônio Corradi, Gustavo César; Nino, Gustavo; Shin, Hao-Hsin; Obinata, Hirofumi; Ren, Hui; Crane, Jason C; Tetreault, Jesse; Guan, Jiahui; Garrett, John W; Kaggie, Joshua D; Park, Jung Gil; Dreyer, Keith; Juluru, Krishna; Kersten, Kristopher; Rockenbach, Marcio Aloisio Bezerra Cavalcanti; Linguraru, Marius George; Haider, Masoom A; AbdelMaseeh, Meena; Rieke, Nicola; Damasceno, Pablo F; E Silva, Pedro Mario Cruz; Wang, Pochuan; Xu, Sheng; Kawano, Shuichi; Sriswasdi, Sira; Park, Soo Young; Grist, Thomas M; Buch, Varun; Jantarabenjakul, Watsamon; Wang, Weichung; Tak, Won Young; Li, Xiang; Lin, Xihong; Kwon, Young Joon; Quraini, Abood; Feng, Andrew; Priest, Andrew N; Turkbey, Baris; Glicksberg, Benjamin; Bizzo, Bernardo; Kim, Byung Seok; Tor-DÃez, Carlos; Lee, Chia-Cheng; Hsu, Chia-Jung; Lin, Chin; Lai, Chiu-Ling; Hess, Christopher P; Compas, Colin; Bhatia, Deepeksha; Oermann, Eric K; Leibovitz, Evan; Sasaki, Hisashi; Mori, Hitoshi; Yang, Isaac; Sohn, Jae Ho; Murthy, Krishna Nand Keshava; Fu, Li-Chen; de Mendonça, Matheus Ribeiro Furtado; Fralick, Mike; Kang, Min Kyu; Adil, Mohammad; Gangai, Natalie; Vateekul, Peerapon; Elnajjar, Pierre; Hickman, Sarah; Majumdar, Sharmila; McLeod, Shelley L; Reed, Sheridan; Gräf, Stefan; Harmon, Stephanie; Kodama, Tatsuya; Puthanakit, Thanyawee; Mazzulli, Tony; de Lavor, Vitor Lima; Rakvongthai, Yothin; Lee, Yu Rim; Wen, Yuhong; Gilbert, Fiona J; Flores, Mona G; Li, Quanzheng
Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.
PMID: 34526699
ISSN: 1546-170x
CID: 5012402
Application of Cooperative Game Theory Principles to Interpret Machine Learning Models of Nonhome Discharge Following Spine Surgery
Martini, Michael L; Neifert, Sean N; Oermann, Eric K; Gilligan, Jeffrey T; Rothrock, Robert J; Yuk, Frank J; Gal, Jonathan S; Nistal, Dominic A; Caridi, John M
STUDY DESIGN/METHODS:Retrospective analysis of prospectively acquired data. OBJECTIVE:The aim of this study was to identify interaction effects that modulate nonhome discharge (NHD) risk by applying coalitional game theory principles to interpret machine learning models and understand variable interaction effects underlying NHD risk. SUMMARY OF BACKGROUND DATA/BACKGROUND:NHD may predispose patients to adverse outcomes during their care. Previous studies identified potential factors implicated in NHD; however, it is unclear how interaction effects between these factors contribute to overall NHD risk. METHODS:Of the 11,150 reviewed cases involving procedures for degenerative spine conditions, 1764 cases (15.8%) involved NHD. Gradient boosting classifiers were used to construct predictive models for NHD for each patient. Shapley values, which assign a unique distribution of the total NHD risk to each model variable using an optimal cost-sharing rule, quantified feature importance and examined interaction effects between variables. RESULTS:Models constructed from features identified by Shapley values were highly predictive of patient-level NHD risk (mean C-statistic = 0.91). Supervised clustering identified distinct patient subgroups with variable NHD risk and their shared characteristics. Focused interaction analysis of surgical invasiveness, age, and comorbidity burden suggested age as a worse risk factor than comorbidity burden due to stronger positive interaction effects. Additionally, negative interaction effects were found between age and low blood loss, indicating that intraoperative hemostasis may be critical for reducing NHD risk in the elderly. CONCLUSION/CONCLUSIONS:This strategy provides novel insights into feature interactions that contribute to NHD risk after spine surgery. Patients with positively interacting risk factors may require special attention during their hospitalization to control NHD risk.Level of Evidence: 3.
PMID: 33394980
ISSN: 1528-1159
CID: 5883332