Searched for: in-biosketch:true
person:schumj02
Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head
Srinivasan, Vivek J; Adler, Desmond C; Chen, Yueli; Gorczynska, Iwona; Huber, Robert; Duker, Jay S; Schuman, Joel S; Fujimoto, James G
PURPOSE: To demonstrate ultrahigh-speed optical coherence tomography (OCT) imaging of the retina and optic nerve head at 249,000 axial scans per second and a wavelength of 1060 nm. To investigate methods for visualization of the retina, choroid, and optic nerve using high-density sampling enabled by improved imaging speed. METHODS: A swept-source OCT retinal imaging system operating at a speed of 249,000 axial scans per second was developed. Imaging of the retina, choroid, and optic nerve were performed. Display methods such as speckle reduction, slicing along arbitrary planes, en face visualization of reflectance from specific retinal layers, and image compounding were investigated. RESULTS: High-definition and three-dimensional (3D) imaging of the normal retina and optic nerve head were performed. Increased light penetration at 1060 nm enabled improved visualization of the choroid, lamina cribrosa, and sclera. OCT fundus images and 3D visualizations were generated with higher pixel density and less motion artifacts than standard spectral/Fourier domain OCT. En face images enabled visualization of the porous structure of the lamina cribrosa, nerve fiber layer, choroid, photoreceptors, RPE, and capillaries of the inner retina. CONCLUSIONS: Ultrahigh-speed OCT imaging of the retina and optic nerve head at 249,000 axial scans per second is possible. The improvement of approximately 5 to 10x in imaging speed over commercial spectral/Fourier domain OCT technology enables higher density raster scan protocols and improved performance of en face visualization methods. The combination of the longer wavelength and ultrahigh imaging speed enables excellent visualization of the choroid, sclera, and lamina cribrosa.
PMCID:2743183
PMID: 18658089
ISSN: 0146-0404
CID: 1885862
Clinical application of MRI in ophthalmology
Townsend, Kelly A; Wollstein, Gadi; Schuman, Joel S
MRI has long been applied to clinical medical and neurological cases for the structural assessment of tissues as well as their physiological and functional needs and processes. These uses are at a variety of developmental stages in ophthalmology, from common use of clinical structural assessment for neuro-ophthalmology and evaluation of space-occupying lesions to the beginning stages of experimentally measuring functional activation of specific layers within the retina and measurement of physiological oxygen responses. New MRI methodologies, such as the use of orbital coils and Gd-DTPA image enhancement, have been researched, developed, and validated in the eye, opening new possibilities for this technology to enter the clinic. This review aims to summarize the clinical ophthalmological uses of MRI, focusing on the current use of the technology and future applications.
PMCID:2912145
PMID: 18384176
ISSN: 0952-3480
CID: 1885872
Diagnostic tools for glaucoma detection and management
Sharma, Pooja; Sample, Pamela A; Zangwill, Linda M; Schuman, Joel S
Early diagnosis of glaucoma is critical to prevent permanent structural damage and irreversible vision loss. Detection of glaucoma typically relies on examination of structural damage to the optic nerve combined with measurements of visual function. To aid the clinician in evaluation of visual function and structure, computer-based devices such as confocal scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography provide quantitative assessments of structural damage, and visual function testing includes standard automated perimetry as well as selective techniques, including short-wavelength automated perimetry and frequency-doubling technology perimetry are available. This article will review current literature on diagnostic modalities available for glaucoma with emphasis on the best evidence available in the literature to support their use in clinical practice.
PMCID:2643302
PMID: 19038620
ISSN: 0039-6257
CID: 1885882
Assessing the relationship between central corneal thickness and retinal nerve fiber layer thickness in healthy subjects
Mumcuoglu, Tarkan; Townsend, Kelly A; Wollstein, Gadi; Ishikawa, Hiroshi; Bilonick, Richard A; Sung, Kyung Rim; Kagemann, Larry; Schuman, Joel S
PURPOSE: To determine the relationship between central corneal thickness (CCT) and retinal nerve fiber layer (RNFL) thickness obtained by scanning laser polarimetry (GDx-VCC; Carl Zeiss Meditec, Dublin, California, USA), confocal scanning laser ophthalmoscopy (HRT II; Heidelberg Engineering, Heidelberg, Germany), and optical coherence tomography (Stratus OCT; Carl Zeiss Meditec). DESIGN: Multicenter clinical trial, retrospective cross-sectional study. METHODS: One hundred and nine healthy subjects from the Advanced Imaging in Glaucoma Study were enrolled in this study. All subjects had a standard clinical examination, including visual field (VF) and good-quality scans from all three imaging devices. CCT was measured using an ultrasonic pachymeter. A linear mixed-effects model was used to assess the relationship between RNFL thickness and CCT, accounting for clustering of eyes within subjects, testing site, ethnicity, family history of glaucoma, axial length intraocular pressure, and VF global indices. RESULTS: For OCT and GDx, there was a slight nonstatistically significant positive relationship between CCT and RNFL thickness. For HRT, there was a slight nonstatistically significant negative relationship between CCT and RNFL thickness. Relationships for each device were found to differ between sites. CONCLUSIONS: CCT was not statistically significantly related to RNFL thickness in healthy eyes.
PMCID:2605942
PMID: 18657796
ISSN: 1879-1891
CID: 1885892
Biglan Festschrift [Historical Article]
Schuman, Joel S
PMID: 19085436
ISSN: 1744-5205
CID: 1885902
Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography
Lu, Ake Tzu-Hui; Wang, Mingwu; Varma, Rohit; Schuman, Joel S; Greenfield, David S; Smith, Scott D; Huang, David
PURPOSE: To identify the best combination of Stratus optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness parameters for the detection of glaucoma. DESIGN: Observational cross-sectional study. PARTICIPANTS: Eighty-nine age-matched normal and perimetric glaucoma participants enrolled in the Advanced Imaging for Glaucoma Study. METHODS: The Zeiss Stratus OCT system was used to obtain the circumpapillary RNFL thickness in both eyes of each participant. Right and left eye clock-hour data are analyzed together, assuming mirror-image symmetry. The RNFL diagnostic parameters were combined using either or-logic or and-logic approaches. MAIN OUTCOME MEASURES: Area under the receiver operating characteristic curve (AROC), sensitivity, and specificity are used to evaluate diagnostic performance. RESULTS: Overall average RNFL thickness has the highest AROC value (0.89) of all single parameters evaluated, followed by the inferior and superior quadrants (0.88 and 0.86, respectively). The clock hours with the best AROC values are in the inferior and superior quadrants. The highest AROC (0.92) was achieved by the or-logic combination of overall, inferior, and superior quadrant RNFL thicknesses. The 3-parameter combination was significantly better than the overall average alone (P = 0.01). The addition of more quadrants or clock hours to the combination reduced diagnostic performance. CONCLUSIONS: The best stand-alone diagnostic strategy for Stratus OCT RNFL data is to classify an eye as glaucomatous if the overall, inferior quadrant, or superior quadrant RNFL thickness average is below normal.
PMCID:2756507
PMID: 18514318
ISSN: 1549-4713
CID: 1885912
Ultrahigh-resolution spectral domain optical coherence tomography imaging of the lamina cribrosa
Kagemann, Larry; Ishikawa, Hiroshi; Wollstein, Gadi; Brennen, Peter M; Townsend, Kelly A; Gabriele, Michelle L; Schuman, Joel S
Study of the structure of the lamina cribrosa is critical in glaucoma research. The purpose of this study is to determine the optimal spectral domain optical coherence tomography imaging protocol for the digital isolation and display of the lamina cribrosa. Three-dimensional datasets centered on the lamina cribrosa were obtained with 200 X 200 to 512 X 512 A-scan densities. The effect of scan density and c-mode slab thickness was subjectively compared. Increasing slab thickness reduced the sharpness of visible prelamina and lamina cribrosa structures. In retrolamina structures, thin slabs provided good visualization, but increased slab size increased the visibility of deeper structures. Scan times as short as 2.3 seconds (256 X 256 A-scans) degraded visualization of the shape of the optic nerve head. The optical scan protocol for lamina cribrosa imaging appears to be a 3 x 3 mm 200 X 200 A-scan volume with the lamina cribrosa positioned near direct current.
PMCID:2908153
PMID: 18777881
ISSN: 1542-8877
CID: 1885922
Optical coherence tomography scan circle location and mean retinal nerve fiber layer measurement variability
Gabriele, Michelle L; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Townsend, Kelly A; Kagemann, Larry; Wojtkowski, Maciej; Srinivasan, Vivek J; Fujimoto, James G; Duker, Jay S; Schuman, Joel S
PURPOSE: To investigate the effect on optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness measurements of varying the standard 3.4-mm-diameter circle location. METHODS: The optic nerve head (ONH) region of 17 eyes of 17 healthy subjects was imaged with high-speed, ultrahigh-resolution OCT (hsUHR-OCT; 501 x 180 axial scans covering a 6 x 6-mm area; scan time, 3.84 seconds) for a comprehensive sampling. This method allows for systematic simulation of the variable circle placement effect. RNFL thickness was measured on this three-dimensional dataset by using a custom-designed software program. RNFL thickness was resampled along a 3.4-mm-diameter circle centered on the ONH, then along 3.4-mm circles shifted horizontally (x-shift), vertically (y-shift) and diagonally up to +/-500 microm (at 100-microm intervals). Linear mixed-effects models were used to determine RNFL thickness as a function of the scan circle shift. A model for the distance between the two thickest measurements along the RNFL thickness circular profile (peak distance) was also calculated. RESULTS: RNFL thickness tended to decrease with both positive and negative x- and y-shifts. The range of shifts that caused a decrease greater than the variability inherent to the commercial device was greater in both nasal and temporal quadrants than in the superior and inferior ones. The model for peak distance demonstrated that as the scan moves nasally, the RNFL peak distance increases, and as the circle moves temporally, the distance decreases. Vertical shifts had a minimal effect on peak distance. CONCLUSIONS: The location of the OCT scan circle affects RNFL thickness measurements. Accurate registration of OCT scans is essential for measurement reproducibility and longitudinal examination (ClinicalTrials.gov number, NCT00286637).
PMCID:2728289
PMID: 18515577
ISSN: 0146-0404
CID: 1885932
Automated assessment of the optic nerve head on stereo disc photographs
Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Sung, Kyung R; Kagemann, Larry; Townsend, Kelly A; Schuman, Joel S
PURPOSE: To develop automated software for optic nerve head (ONH) quantitative assessment from stereoscopic disc photographs and to evaluate its performance in comparison with human expert assessment. METHODS: A fully automated system, including three-dimensional ONH modeling, disc margin detection, cup margin detection, and calculation of stereometric ONH parameters, was developed and tested. One eye each from 54 subjects (23 healthy, 17 suspected glaucoma, and 14 glaucoma) was enrolled. The majority opinion of three experts defined disc and cup margins on the disc photographs was used for comparison. Seven ONH parameters, disc area, rim area, rim volume, cup area, cup volume, cup-to-disc (C/D) area ratio, and vertical C/D ratio, were computed based on both machine- and expert-defined margins and compared between the methods. RESULTS: All automated ONH measurements showed good correlation with the expert defined margins (Pearson r = 0.90, disc area; 0.56, rim area; 0.78, rim volume; 0.88, cup area; 0.93, cup volume; 0.69, C/D area ratio; and 0.67, vertical C/D ratio; all P or= 0.21). The mean or median of automatically defined disc and cup areas was significantly higher than the subjective assessment (disc area P = 0.0001, t-test; cup area P = 0.036, Wilcoxon signed ranks test), although they had high correlation coefficients. The software failed to detect the disc margin for all the disc photographs with peripapillary atrophy. CONCLUSIONS: The automated ONH analysis method provides an objective and quantitative ONH evaluation using widely available stereo disc photographs.
PMCID:2923578
PMID: 18326698
ISSN: 0146-0404
CID: 1885942
Sources of longitudinal variability in optical coherence tomography nerve-fibre layer measurements
Kagemann, L; Mumcuoglu, T; Wollstein, G; Bilonick, R; Ishikawa, H; Townsend, K A; Gabriele, M; Fujimoto, J G; Schuman, J S
AIMS: The purpose of this study was to compare the day-to-day reproducibility of optical coherence tomography (OCT; StratusOCT, Carl Zeiss Meditec, Dublin, CA) measurements of retinal nerve-fibre layer (RNFL) measurements at time points 1 year apart. METHODS: One eye in each of 11 healthy subjects was examined using the StratusOCT fast RNFL scan protocol. Three fast RNFL scans with signal strength > or =7 were obtained on each of 3 days within a month. This protocol was repeated after 12 months. A linear mixed effects model fitted to the nested data was used to compute the variance components. RESULTS: The square root of the variance component that was attributed to the differences between subjects was 7.17 microm in 2005 and 7.28 microm in 2006. The square roots of the variance component due to differences between days within a single subject were 1.95 microm and 1.50 microm, respectively, and for within day within a single subject were 2.51 microm and 2.55 microm, respectively. There were no statistically significant differences for any variance component between the two testing occasions. CONCLUSIONS: Measurement error variance remains similar from year to year. Day and scan variance component values obtained in a cohort study may be safely applied for prediction of long-term reproducibility.
PMCID:2743163
PMID: 18523086
ISSN: 1468-2079
CID: 1893292