Searched for: in-biosketch:true
person:bls322
Decitabine attenuates nociceptive behavior in a murine model of bone cancer pain
Appel, Camilla Kristine; Scheff, Nicole Newell; Viet, Chi Tonglien; Lee Schmidt, Brian; Heegaard, Anne-Marie
Bone cancer metastasis is extremely painful and decreases the quality of life of the affected patients. Available pharmacological treatments are not able to sufficiently ameliorate the pain and as cancer patients are living longer new treatments for pain management are needed. Decitabine (5-aza-2'-deoxycytidine), a DNA methyltransferases inhibitor, has analgesic properties in pre-clinical models of post-surgical and soft tissue oral cancer pain by inducing an up-regulation of endogenous opioids. In this study, we report that daily treatment with decitabine (2µg/g, i.p.) attenuated nociceptive behavior in the 4T1-luc2 mouse model of bone cancer pain. We hypothesized that the analgesic mechanism of decitabine involved activation of the endogenous opioid system through demethylation and reexpression of the transcriptionally silenced endothelin B receptor gene, Ednrb. Indeed, Ednrb was hypermethylated and transcriptionally silenced in the mouse model of bone cancer pain. We demonstrated that expression of Ednrb in the cancer cells lead to release of β-endorphin in the cell supernatant which reduced the number of responsive DRG neurons in an opioid-dependent manner. Our study supports a role of demethylating drugs, such as decitabine, as unique pharmacological agents targeting the pain in the cancer microenvironment.
PMID: 30422869
ISSN: 1872-6623
CID: 3457002
TNFα in the Trigeminal Nociceptive System Is Critical for Temporomandibular Joint Pain
Bai, Qian; Liu, Sufang; Shu, Hui; Tang, Yuanyuan; George, Sanjeeth; Dong, Tieli; Schmidt, Brian L; Tao, Feng
Previous studies have shown that tumor necrosis factor alpha (TNFα) is significantly increased in complete Freund's adjuvant (CFA)-treated temporomandibular joint (TMJ) tissues. However, it is unclear whether TNFα in the trigeminal nociceptive system contributes to the development of TMJ pain. In the present study, we investigated the role of TNFα in trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) in CFA-induced inflammatory TMJ pain. Intra-TMJ injection of CFA (10 μl, 5 mg/ml) induced inflammatory pain in the trigeminal nerve V2- and V3-innervated skin areas of WT mice, which was present on day 1 after CFA and persisted for at least 10 days. TNFα in both TG and Sp5C of WT mice was upregulated after CFA injection. The CFA-induced TMJ pain was significantly inhibited in TNFα KO mice. The immunofluorescence staining showed that intra-TMJ CFA injection not only enhanced co-localization of TNFα with Iba1 (a marker for microglia) in both TG and Sp5C but also markedly increased the expression of TNFα in the Sp5C neurons. By the methylated DNA immunoprecipitation assay, we also found that DNA methylation at the TNF gene promoter region in the TG was dramatically diminished after CFA injection, indicating that epigenetic regulation may be involved in the CFA-enhanced TNFα expression in our model. Our results suggest that TNFα in the trigeminal nociceptive system plays a critical role in CFA-induced inflammatory TMJ pain.
PMID: 29696511
ISSN: 1559-1182
CID: 3052882
Granulocyte-Colony Stimulating Factor-Induced Neutrophil Recruitment Provides Opioid-Mediated Endogenous Anti-nociception in Female Mice With Oral Squamous Cell Carcinoma
Scheff, Nicole N; Alemu, Robel G; Klares, Richard; Wall, Ian M; Yang, Stephen C; Dolan, John C; Schmidt, Brian L
Oral cancer patients report severe function-induced pain; severity is greater in females. We hypothesize that a neutrophil-mediated endogenous analgesic mechanism is responsible for sex differences in nociception secondary to oral squamous cell carcinoma (SCC). Neutrophils isolated from the cancer-induced inflammatory microenvironment contain β-endorphin protein and are identified by the Ly6G+ immune marker. We previously demonstrated that male mice with carcinogen-induced oral SCC exhibit less nociceptive behavior and a higher concentration of neutrophils in the cancer microenvironment compared to female mice with oral SCC. Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone marrow to the cancer microenvironment. We found that recombinant G-CSF (rG-CSF, 5 μg/mouse, intraperitoneal) significantly increased circulating Ly6G+ neutrophils in the blood of male and female mice within 24 h of administration. In an oral cancer supernatant mouse model, rG-CSF treatment increased cancer-recruited Ly6G+ neutrophil infiltration and abolished orofacial nociceptive behavior evoked in response to oral cancer supernatant in both male and female mice. Local naloxone treatment restored the cancer mediator-induced nociceptive behavior. We infer that rG-CSF-induced Ly6G+ neutrophils drive an endogenous analgesic mechanism. We then evaluated the efficacy of chronic rG-CSF administration to attenuate oral cancer-induced nociception using a tongue xenograft cancer model with the HSC-3 human oral cancer cell line. Saline-treated male mice with HSC-3 tumors exhibited less oral cancer-induced nociceptive behavior and had more β-endorphin protein in the cancer microenvironment than saline-treated female mice with HSC-3 tumors. Chronic rG-CSF treatment (2.5 μg/mouse, every 72 h) increased the HSC-3 recruited Ly6G+ neutrophils, increased β-endorphin protein content in the tongue and attenuated nociceptive behavior in female mice with HSC-3 tumors. From these data, we conclude that neutrophil-mediated endogenous opioids warrant further investigation as a potential strategy for oral cancer pain treatment.
PMCID:6756004
PMID: 31607857
ISSN: 1662-5099
CID: 4256722
Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma
Ye, Yi; Scheff, Nicole N; Bernabé, Daniel; Salvo, Elizabeth; Ono, Kentaro; Liu, Cheng; Veeramachaneni, Ratna; Viet, Chi T; Viet, Dan T; Dolan, John C; Schmidt, Brian L
Oral cancer is often painful and lethal. Oral cancer progression and pain may result from shared pathways that involve unresolved inflammation and elevated levels of pro-inflammatory cytokines. Resolvin D-series (RvDs) are endogenous lipid mediators derived from omega-3 fatty acids that exhibit pro-resolution and anti-inflammatory actions. These mediators have recently emerged as a novel class of therapeutics for diseases that involve inflammation; the specific roles of RvDs in oral cancer and associated pain are not defined. The present study investigated the potential of RvDs (RvD1 and RvD2) to treat oral cancer and alleviate oral cancer pain. We found down-regulated mRNA levels of GPR18 and GPR32 (which code for receptors RvD1 and RvD2) in oral cancer cells. Both RvD1 and RvD2 inhibited oral cancer proliferation in vitro. Using two validated mouse oral squamous cell carcinoma xenograft models, we found that RvD2, the more potent anti-inflammatory lipid mediator, significantly reduced tumor size. The mechanism of this action might involve suppression of IL-6, C-X-C motif chemokine 10 (CXCL10), and reduction of tumor necrosis. RvD2 generated short-lasting analgesia in xenograft cancer models, which coincided with decreased neutrophil infiltration and myeloperoxidase activity. Using a cancer supernatant model, we demonstrated that RvD2 reduced cancer-derived cytokines/chemokines (TNF-α, IL-6, CXCL10, and MCP-1), cancer mediator-induced CD11b+Ly6G- myeloid cells, and nociception. We infer from our results that manipulation of the endogenous pro-resolution pathway might provide a novel approach to improve oral cancer and cancer pain treatment.
PMID: 30009833
ISSN: 1873-7064
CID: 3201952
Synthetic peripherally-restricted cannabinoid suppresses chemotherapy-induced peripheral neuropathy pain symptoms by CB1 receptor activation
Mulpuri, Yatendra; Marty, Vincent N; Munier, Joseph J; Mackie, Ken; Schmidt, Brian L; Seltzman, Herbert H; Spigelman, Igor
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe and dose-limiting side effect of cancer treatment that affects millions of cancer survivors throughout the world and current treatment options are extremely limited by their side effects. Cannabinoids are highly effective in suppressing pain symptoms of chemotherapy-induced and other peripheral neuropathies but their widespread use is limited by central nervous system (CNS)-mediated side effects. Here, we tested one compound from a series of recently developed synthetic peripherally restricted cannabinoids (PRCBs) in a rat model of cisplatin-induced peripheral neuropathy. Results show that local or systemic administration of 4-{2-[-(1E)-1[(4-propylnaphthalen-1-yl)methylidene]-1H-inden-3-yl]ethyl}morpholine (PrNMI) dose-dependently suppressed CIPN mechanical and cold allodynia. Orally administered PrNMI also dose-dependently suppressed CIPN allodynia symptoms in both male and female rats without any CNS side effects. Co-administration with selective cannabinoid receptor subtype blockers revealed that PrNMI's anti-allodynic effects are mediated by CB1 receptor (CB1R) activation. Expression of CB2Rs was reduced in dorsal root ganglia from CIPN rats, whereas expression of CB1Rs and various endocannabinoid synthesizing and metabolizing enzymes was unaffected. Daily PrNMI treatment of CIPN rats for two weeks showed a lack of appreciable tolerance to PrNMI's anti-allodynic effects. In an operant task which reflects cerebral processing of pain, PrNMI also dose-dependently suppressed CIPN pain behaviors. Our results demonstrate that PRCBs exemplified by PrNMI may represent a viable option for the treatment of CIPN pain symptoms.
PMID: 29981335
ISSN: 1873-7064
CID: 3185962
Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome
Jimenez-Vargas, Nestor N; Pattison, Luke A; Zhao, Peishen; Lieu, TinaMarie; Latorre, Rocco; Jensen, Dane D; Castro, Joel; Aurelio, Luigi; Le, Giang T; Flynn, Bernard; Herenbrink, Carmen Klein; Yeatman, Holly R; Edgington-Mitchell, Laura; Porter, Christopher J H; Halls, Michelle L; Canals, Meritxell; Veldhuis, Nicholas A; Poole, Daniel P; McLean, Peter; Hicks, Gareth A; Scheff, Nicole; Chen, Elyssa; Bhattacharya, Aditi; Schmidt, Brian L; Brierley, Stuart M; Vanner, Stephen J; Bunnett, Nigel W
Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with β-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.
PMCID:6077730
PMID: 30012612
ISSN: 1091-6490
CID: 3201962
Utilization of Immunotherapy in Head and Neck Cancers Pre-Food and Drug Administration Approval of Immune Checkpoint Inhibitors [Meeting Abstract]
Wu, S. P. P.; Tam, M.; Gerber, N. K.; Li, Z.; Schmidt, B.; Persky, M.; Sanfilippo, N. J.; Tran, T.; Jacobson, A.; DeLacure, M.; Hu, K. S.; Persky, M.; Schreiber, D. P.; Givi, B.
ISI:000428145600179
ISSN: 0360-3016
CID: 3035562
Neutrophil-Mediated Endogenous Analgesia Contributes to Sex Differences in Oral Cancer Pain
Scheff, Nicole N; Bhattacharya, Aditi; Dowse, Edward; Dang, Richard X; Dolan, John C; Wang, Susanna; Kim, Hyesung; Albertson, Donna G; Schmidt, Brian L
The incidence of oral cancer in the United States is increasing, especially in young people and women. Patients with oral cancer report severe functional pain. Using a patient cohort accrued through the New York University Oral Cancer Center and immune-competent mouse models, we identify a sex difference in the prevalence and severity of oral cancer pain. A neutrophil-mediated endogenous analgesic mechanism is present in male mice with oral cancer. Local naloxone treatment potentiates cancer mediator-induced orofacial nociceptive behavior in male mice only. Tongues from male mice with oral cancer have significantly more infiltrating neutrophils compared to female mice with oral cancer. Neutrophils isolated from the cancer-induced inflammatory microenvironment express beta-endorphin and met-enkephalin. Furthermore, neutrophil depletion results in nociceptive behavior in male mice. These data suggest a role for sex-specific, immune cell-mediated endogenous analgesia in the treatment of oral cancer pain.
PMID: 30405367
ISSN: 1662-5145
CID: 3458152
Tumor necrosis factor alpha secreted from oral squamous cell carcinoma contributes to cancer pain and associated inflammation
Scheff, Nicole N; Ye, Yi; Bhattacharya, Aditi; MacRae, Justin; Hickman, Dustin H; Sharma, Atul K; Dolan, John C; Schmidt, Brian L
Oral cancer patients report severe pain during function. Inflammation plays a role in the oral cancer microenvironment; however, the role of immune cells and associated secretion of inflammatory mediators in oral cancer pain has not been well defined. In this study, we utilized two oral cancer mouse models: a cell line supernatant injection model and the 4-nitroquinoline-1-oxide (4NQO) chemical carcinogenesis model. We used the two models to study changes in immune cell infiltrate and orofacial nociception associated with oral squamous cell carcinoma (oSCC). Oral cancer cell line supernatant inoculation and 4NQO-induced oSCC resulted in functional allodynia and neuronal sensitization of trigeminal tongue afferent neurons. While the infiltration of immune cells is a prominent component of both oral cancer models, our use of immune-deficient mice demonstrated that oral cancer-induced nociception was not dependent on the inflammatory component. Furthermore, the inflammatory cytokine, tumor necrosis factor alpha (TNFa), was identified in high concentration in oral cancer cell line supernatant and in the tongue tissue of 4NQO-treated mice with oSCC. Inhibition of TNFa signaling abolished oral cancer cell line supernatant-evoked functional allodynia and disrupted T cell infiltration. With these data, we identified TNFa as a prominent mediator in oral cancer-induced nociception and inflammation highlighting the need for further investigation in neural-immune communication in cancer pain.
PMCID:5680143
PMID: 28885456
ISSN: 1872-6623
CID: 2688872
Alterations in opioid inhibition cause widespread nociception but do not affect anxiety-like behavior in oral cancer mice
Ye, Yi; Bernabe, Daniel G; Salvo, Elizabeth; Viet, Chi T; Ono, Kentaro; Dolan, John C; Janal, Malvin; Aouizerat, Brad E; Miaskowski, Christine; Schmidt, Brian L
Widespread pain and anxiety are commonly reported in cancer patients. We hypothesize that cancer is accompanied by attenuation of endogenous opioid-mediated inhibition, which subsequently causes widespread pain and anxiety. To test this hypothesis we used a mouse model of oral squamous cell carcinoma (SCC) in the tongue. We found that mice with tongue SCC exhibited widespread nociceptive behaviors in addition to behaviors associated with local nociception that we reported previously. Tongue SCC mice exhibited a pattern of reduced opioid receptor expression in the spinal cord; intrathecal administration of respective mu (MOR), delta (DOR), and kappa (KOR) opioid receptor agonists reduced widespread nociception in mice, except for the fail flick assay following administration of the MOR agonist. We infer from these findings that opioid receptors contribute to widespread nociception in oral cancer mice. Despite significant nociception, mice with tongue SCC did not differ from sham mice in anxiety-like behaviors as measured by the open field assay and elevated maze. No significant differences in c-Fos staining were found in anxiety-associated brain regions in cancer relative to control mice. No correlation was found between nociceptive and anxiety-like behaviors. Moreover, opioid receptor agonists did not yield a statistically significant effect on behaviors measured in the open field and elevated maze in cancer mice. Lastly, we used an acute cancer pain model (injection of cancer supernatant into the mouse tongue) to test whether adaptation to chronic pain is responsible for the absence of greater anxiety-like behavior in cancer mice. No changes in anxiety-like behavior were observed in mice with acute cancer pain.
PMID: 28673713
ISSN: 1873-7544
CID: 2617052