Try a new search

Format these results:

Searched for:

in-biosketch:true

person:dz4

Total Results:

390


Dna methylation and proteomic alterations identify histologically-defined tumor cell populations and characterize intratumor heterogeneity in glioblastoma [Meeting Abstract]

Gagner, J -P; Kamen, S; Nayak, S; Serrano, J; Vasudevaraja, V; Bledea, R; Ueberheide, B; Snuderl, M; Lechpammer, M; Zagzag, D
BACKGROUND: Tumor heterogeneity presents a major challenge to cancer diagnosis and treatment. In addition to interpatient tumor variability, intratumoral heterogeneity characterized by distinct molecular and phenotypic profiles is increasingly recognized as a major cause of therapy resistance and cancer recurrence. Because DNA methylation patterns are largely responsible for determining cell-type-specific functioning, we hypothesized that distinct DNA methylation and proteomic alterations could be identified in histologically-defined invasive and proliferative tumor cell populations in human isocitrate dehydrogenase 1 (IDH1)- mutated and wild-type glioblastoma (GBM).
METHOD(S): Formalin-fixed paraffin-embedded tissue sections of human adult IDH1-mutated and wild-type GBM were laser-microdissected (LM) into perinecrotic pseudopalisading tumor cells (PPCs), non-pseudopalisading tumor core cells (NPPCs), invasive subpial spread (SPS) and perivascular satellitosis tumor cells and brain adjacent to tumor cells prior to analysis and compared to non-microdissected tumor (NMT) and/or germline DNA. Genomewide DNA methylation and chromosomal copy numbers were determined with Infinium MethylationEPIC 850K BeadChip and intratumoral DNA methylation patterns compared by unsupervised hierarchical clustering. Label-free quantitative liquid chromatography-mass spectrometry of proteins was performed and proteins differentially expressed across LM areas subjected to pathway enrichment analysis.
RESULT(S): Unsupervised hierarchical classification of DNA methylation patterns for each LM area and NMT demonstrated remarkable clustering for all patients, based on methylation probe and methylated gene patterns. Proteomics analysis showed upregulation of hypoxia-inducible factor-1 inducible proteins in hypoxic PPCs. Out of 1819 proteins quantified, 5 were overexpressed and 9 underexpressed more than 10-fold in SPS compared with NPPCs and associated with alterations in metabolism, transport, extracellular matrix and apoptosis. Correlation of protein expression and DNA methylation patterns was noted.
CONCLUSION(S): Compared to NPPCs, SPS cells migrating toward the invasive edge share a relatively consistent epigenetic and proteomic signature, suggesting potentially targetable common mechanism(s) of invasion shared among GBM
EMBASE:628634723
ISSN: 1523-5866
CID: 4021782

Predicting Genotype and Survival in Glioma Using Standard Clinical MR Imaging Apparent Diffusion Coefficient Images: A Pilot Study from The Cancer Genome Atlas

Wu, C-C; Jain, R; Radmanesh, A; Poisson, L M; Guo, W-Y; Zagzag, D; Snuderl, M; Placantonakis, D G; Golfinos, J; Chi, A S
BACKGROUND AND PURPOSE/OBJECTIVE:Few studies have shown MR imaging features and ADC correlating with molecular markers and survival in patients with glioma. Our purpose was to correlate MR imaging features and ADC with molecular subtyping and survival in adult diffuse gliomas. MATERIALS AND METHODS/METHODS:promoter methylation, and overall survival. RESULTS:wild-type glioma. Other MR imaging features were not statistically significant predictors of survival. CONCLUSIONS:wild-type gliomas.
PMID: 30190259
ISSN: 1936-959x
CID: 3271772

Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma

Snuderl, Matija; Kannan, Kasthuri; Pfaff, Elke; Wang, Shiyang; Stafford, James M; Serrano, Jonathan; Heguy, Adriana; Ray, Karina; Faustin, Arline; Aminova, Olga; Dolgalev, Igor; Stapleton, Stacie L; Zagzag, David; Chiriboga, Luis; Gardner, Sharon L; Wisoff, Jeffrey H; Golfinos, John G; Capper, David; Hovestadt, Volker; Rosenblum, Marc K; Placantonakis, Dimitris G; LeBoeuf, Sarah E; Papagiannakopoulos, Thales Y; Chavez, Lukas; Ahsan, Sama; Eberhart, Charles G; Pfister, Stefan M; Jones, David T W; Karajannis, Matthias A
Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. Here, we analyzed pediatric and adult pineoblastoma samples (n = 23) using a combination of genome-wide DNA methylation profiling and whole-exome sequencing or whole-genome sequencing. Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower-grade pineal tumors and normal pineal gland. Recurrent variants were found in genes involved in PKA- and NF-κB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expresion of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain.
PMCID:6054684
PMID: 30030436
ISSN: 2041-1723
CID: 3202352

DNA methylation of circulating tumor educated leukocytes as a biomarker of IDH1/2 mutation in diffuse gliomas [Meeting Abstract]

Kloetgen, Andreas; Serrano, Jonathan; Patel, Seema; Bowman, Christopher; Shen, Guomiao; Zagzag, David; Karajannis, Matthias; Golfinos, John; Placantonakis, Dimitris; Tsirigos, Aristotelis; Chi, Andrew; Snuderl, Matija
ISI:000434064400020
ISSN: 0022-3069
CID: 3156212

Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP containing the ancestral DUF1220 domain in pineoblastoma [Meeting Abstract]

Snuderl, M; Kannan, K; Pfaff, E; Wang, S; Stafford, J; Serrano, J; Heguy, A; Ray, K; Faustin, A; Aminova, O; Dolgalev, I; Stapleton, S; Zagzag, D; Chiriboga, L; Gardner, S; Wisoff, J; Golfinos, J; Capper, D; Hovestadt, V; Rosenblum, M; Placantonakis, D; LeBoeuf, S; Papagiannakopoulos, T; Chavez, L; Ahsan, S; Eberhart, C; Pfister, S; Jones, D; Karajannis, M
BACKGROUND: Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. METHODS: We analyzed pediatric and adult pineoblastoma samples (n=23) using integrated genomic studies, including genome-wide DNA methylation profiling, whole-exome or whole-genome sequencing, and whole-transcriptome analysis. RESULTS: Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower grade pineal tumors and normal pineal gland. Recurrent somatic mutations were found in genes involved in PKA-and NF-kappaB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expression of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain. Whole-transcriptome analysis showed that homozygous loss of DROSHA led to distinct changes in RNA expression profile. Disruption of the DROSHA locus in human neural stem cells using the CRISPR/Cas9 system, led to decrease of the DROSHA protein, and massive loss of miRNAs. CONCLUSION: We identified recurrent homozygous deletions of DROSHA in pineoblastoma, suggesting that different mechanisms disrupting miRNA processing are involved in the pathogenesis of familial versus sporadic pineoblastoma. Furthermore, a novel microduplication of PDE4DIP leading to upregulation of DUF1220 protein suggests DUF1220 as a novel oncogenic driver in pineoblastoma
EMBASE:623098707
ISSN: 1523-5866
CID: 3211282

Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy

Winawer, Melodie R; Griffin, Nicole G; Samanamud, Jorge; Baugh, Evan H; Rathakrishnan, Dinesh; Ramalingam, Senthilmurugan; Zagzag, David; Schevon, Catherine A; Dugan, Patricia; Hegde, Manu; Sheth, Sameer A; McKhann, Guy M; Doyle, Werner K; Grant, Gerald A; Porter, Brenda E; Mikati, Mohamad A; Muh, Carrie R; Malone, Colin D; Bergin, Ann Marie R; Peters, Jurriaan M; McBrian, Danielle K; Pack, Alison M; Akman, Cigdem I; LaCoursiere, Christopher M; Keever, Katherine M; Madsen, Joseph R; Yang, Edward; Lidov, Hart G W; Shain, Catherine; Allen, Andrew S; Canoll, Peter; Crino, Peter B; Poduri, Annapurna H; Heinzen, Erin L
OBJECTIVE Somatic variants are a recognized cause of epilepsy-associated focal malformations of cortical development (MCD). We hypothesized that somatic variants may underlie a wider range of focal epilepsy, including non-lesional focal epilepsy (NLFE). Through genetic analysis of brain tissue, we evaluated the role of somatic variation in focal epilepsy with and without MCD. METHODS We identified somatic variants through high-depth exome and ultra-high-depth candidate gene sequencing of DNA from epilepsy surgery specimens and leukocytes from 18 individuals with NLFE and 38 with focal MCD. RESULTS We observed somatic variants in five cases in SLC35A2, a gene associated with glycosylation defects and rare X-linked epileptic encephalopathies. Nonsynonymous variants in SLC35A2 were detected in resected brain, and absent from leukocytes, in 3/18 individuals (17%) with NLFE, one female and two males, with variant allele frequencies (VAFs) in brain-derived DNA of 2-14%. Pathologic evaluation revealed focal cortical dysplasia type Ia (FCD1a) in two of the three NLFE cases. In the MCD cohort, nonsynonymous variants in SCL35A2 were detected in the brains of two males with intractable epilepsy, developmental delay, and MRI suggesting FCD, with VAFs of 19-53%; FCD1a was not observed in either brain tissue specimen. INTERPRETATION We report somatic variants in SLC35A2 as an explanation for a substantial fraction of NLFE, a largely unexplained condition, as well as focal MCD, previously shown to result from somatic mutation but until now only in PI3K-AKT-mTOR pathway genes. Collectively, our findings suggest a larger role than previously recognized for glycosylation defects in the intractable epilepsies.
PMCID:6105543
PMID: 29679388
ISSN: 1531-8249
CID: 3043262

Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence

Katz, Leah M; Hielscher, Thomas; Liechty, Benjamin; Silverman, Joshua; Zagzag, David; Sen, Rajeev; Wu, Peter; Golfinos, John G; Reuss, David; Neidert, Marian Christoph; Wirsching, Hans-Georg; Baumgarten, Peter; Herold-Mende, Christel; Wick, Wolfgang; Harter, Patrick N; Weller, Michael; von Deimling, Andreas; Snuderl, Matija; Sen, Chandra; Sahm, Felix
Epigenetic patterns on the level of DNA methylation have already been shown to separate clinically relevant subgroups of meningiomas. We here set out to identify potential prognostic implications of epigenetic modification on the level of histones with focus on H3K27 trimethylation (H3K27me3). H3K27me3 was assessed by immunohistochemistry on 232 meningiomas from 232 patients. In 194 cases, trimethylation was detected in tumor cells. In 25 cases, staining was limited to vessels while all tumor cells were negative. Finally, 13 cases yielded equivocal staining patterns. Reduced abundance of H3K27me3 in cases with staining limited to vessels was confirmed by mass spectrometry on a subset of cases. Lack of staining for H3K27me3 in all tumor cells was significantly associated with more rapid progression (p = 0.009). In line, H3K27me3-negative cases were associated with a DNA methylation pattern of the more aggressive types among the recently introduced DNA methylation groups. Also, NF2 and SUFU mutations were enriched among cases with complete lack of H3K27me3 staining in tumor cells (p < 0.0001 and p = 0.029, respectively). H3K27me3 staining pattern added significant prognostic insight into WHO grade II cases and in the compound subset of WHO grade I and II cases (p = 0.04 and p = 0.007, respectively). However, it did not further stratify within WHO grade III cases. Collectively, these data indicate that epigenetic modifications beyond DNA methylation are involved in the aggressiveness of meningioma. It also suggests that H3K27me3 immunohistochemistry might be a useful adjunct in meningioma diagnostics, particularly for cases with WHO grade II histology or at the borderline between WHO grade I and II.
PMID: 29627952
ISSN: 1432-0533
CID: 3037152

Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis

Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi; Wang, Haoyu; Gagner, Jean-Pierre; Dolgalev, Igor; Placantonakis, Dimitris; Zagzag, David; Cimmino, Luisa; Snuderl, Matija; Lam, Raymond H W; Chen, Weiqiang
Glioblastoma (GBM) is the most lethal primary adult brain tumor and its pathology is hallmarked by distorted neovascularization, diffuse tumor-associated macrophage infiltration, and potent immunosuppression. Reconstituting organotypic tumor angiogenesis models with biomimetic cell heterogeneity and interactions, pro-/anti-inflammatory milieu and extracellular matrix (ECM) mechanics is critical for preclinical anti-angiogenic therapeutic screening. However, current in vitro systems do not accurately mirror in vivo human brain tumor microenvironment. Here, we engineered a three-dimensional (3D), microfluidic angiogenesis model with controllable and biomimetic immunosuppressive conditions, immune-vascular and cell-matrix interactions. We demonstrate in vitro, GL261 and CT-2A GBM-like tumors steer macrophage polarization towards a M2-like phenotype for fostering an immunosuppressive and proangiogenic niche, which is consistent with human brain tumors. We distinguished that GBM and M2-like immunosuppressive macrophages promote angiogenesis, while M1-like pro-inflammatory macrophages suppress angiogenesis, which we coin "inflammation-driven angiogenesis." We observed soluble immunosuppressive cytokines, predominantly TGF-β1, and surface integrin (αvβ3) endothelial-macrophage interactions are required in inflammation-driven angiogenesis. We demonstrated tuning cell-adhesion receptors using an integrin (αvβ3)-specific collagen hydrogel regulated inflammation-driven angiogenesis through Src-PI3K-YAP signaling, highlighting the importance of altered cell-ECM interactions in inflammation. To validate the preclinical applications of our 3D organoid model and mechanistic findings of inflammation-driven angiogenesis, we screened a novel dual integrin (αvβ3) and cytokine receptor (TGFβ-R1) blockade that suppresses GBM tumor neovascularization by simultaneously targeting macrophage-associated immunosuppression, endothelial-macrophage interactions, and altered ECM. Hence, we provide an interactive and controllable GBM tumor microenvironment and highlight the importance of macrophage-associated immunosuppression in GBM angiogenesis, paving a new direction of screening novel anti-angiogenic therapies.
PMID: 29421553
ISSN: 1878-5905
CID: 2948312

Probing Glioblastoma Tissue Heterogeneity with Laser Capture Microdissection

Gagner, Jean-Pierre; Zagzag, David
Among various methods now available to isolate distinct cell populations or even single cells for DNA/RNA and proteomic analysis, laser capture microdissection (LCM) offers a unique opportunity to study cells in their topological contexts. This chapter focuses on the preparation of LCM membrane slides, tissue staining and laser microdissection of cells of interest from frozen or formalin-fixed, paraffin-embedded glioblastoma tissue.
PMID: 29392703
ISSN: 1940-6029
CID: 2933632

RECURRENT HOMOZYGOUS DELETION OF DROSHA AND MICRODUPLICATION OF PDE4DIP CONTAINING THE ANCESTRAL DUF1220 DOMAIN IN PINEOBLASTOMA [Meeting Abstract]

Snuderl, Matija; Kannan, Kasthuri; Pfaff, Elke; Wang, Shiyang; Stafford, James; Serrano, Jonathan; Heguy, Adriana; Ray, Karina; Faustin, Arline; Aminova, Olga; Dolgalev, Igor; Stapleton, Stacie; Zagzag, David; Chiriboga, Luis; Gardner, Sharon; Wisoff, Jeffrey; Golfinos, John; Capper, David; Hovestadt, Volker; Rosenblum, Marc; Placantonakis, Dimitris; LeBoeuf, Sarah; Papagiannakopoulos, Thales; Chavez, Lukas; Ahsan, Sama; Eberhart, Charles; Pfister, Stefan; Jones, David; Karajannis, Matthias
ISI:000438339000189
ISSN: 1522-8517
CID: 5525552