Try a new search

Format these results:

Searched for:

in-biosketch:true

person:fritzj02

Total Results:

237


MRI-guided sacroiliac joint injections in children and adults: current practice and future developments

Dalili, Danoob; Isaac, Amanda; Fritz, Jan
Common etiologies of low back pain include degenerative arthrosis and inflammatory arthropathy of the sacroiliac joints. The diagnostic workup revolves around identifying and confirming the sacroiliac joints as a pain generator. Diagnostic sacroiliac joint injections often serve as functional additions to the diagnostic workup through eliciting a pain response that tests the hypothesis that the sacroiliac joints do or do not contribute to the patient's pain syndrome. Therapeutic sacroiliac joint injections aim to provide medium- to long-term relief of symptoms and reduce inflammatory activity and, ultimately, irreversible structural damage. Ultrasonography, fluoroscopy, computed tomography, and magnetic resonance imaging (MRI) may be used to guide sacroiliac joint injections. The populations that may benefit most from MRI-guided sacroiliac joint procedures include children, adolescents, adults of childbearing age, and patients receiving serial injections due to the ability of interventional MRI to avoid radiation exposure. Most clinical wide-bore MRI systems can be used for MRI-guided sacroiliac joint injections. Turbo spin echo pulse sequences optimized for interventional needle display visualize the needle tip with an error margin of < 1 mm or less. Published success rates of intra-articular sacroiliac joint drug delivery with MRI guidance range between 87 and 100%. The time required for MR-guided sacroiliac joint injections in adults range between 23-35 min and 40 min in children. In this article, we describe techniques for MRI-guided sacroiliac joint injections, share our practice of incorporating interventional MRI in the care of patients with sacroiliac joint mediated pain, discuss the rationales, benefits, and limitations of interventional MRI, and conclude with future developments.
PMID: 36006462
ISSN: 1432-2161
CID: 5331712

MR Imaging of Acute Knee Injuries: Systematic Evaluation and Reporting

Fritz, Benjamin; Fritz, Jan
Acute knee injury ranges among the most common joint injuries in professional and recreational athletes. Radiographs can detect joint effusion, fractures, deformities, and malalignment; however, MR imaging is most accurate for radiographically occult fractures, chondral injury, and soft tissue injuries. Using a structured checklist approach for systematic MR imaging evaluation and reporting, this article reviews the MR imaging appearances of the spectrum of traumatic knee injuries, including osteochondral injuries, cruciate ligament tears, meniscus tears and ramp lesions, anterolateral complex and collateral ligament injuries, patellofemoral translation, extensor mechanism tears, and nerve and vascular injuries.
PMID: 36739145
ISSN: 1557-8275
CID: 5426832

Treatment of Osteoid Osteoma

Dalili, Danoob; Dalili, Daniel E; Isaac, Amanda; Martel-Villagrán, José; Fritz, Jan
PMCID:10159722
PMID: 37152792
ISSN: 0739-9529
CID: 5544472

Scientific Advances and Technical Innovations in Musculoskeletal Radiology

Fritz, Jan; Runge, Val M
Decades of technical innovations have propelled musculoskeletal radiology through an astonishing evolution. New artificial intelligence and deep learning methods capitalize on many past innovations in magnetic resonance imaging (MRI) to reach unprecedented speed, image quality, and new contrasts. Similarly exciting developments in computed tomography (CT) include clinically applicable molecular specificity and substantially improved spatial resolution of musculoskeletal structures and diseases. This special issue of Investigative Radiology comprises a collection of expert summaries and reviews on the most impactful innovations and cutting-edge topics in musculoskeletal radiology, including radiomics and deep learning methods for musculoskeletal disease detection, high-resolution MR neurography, deep learning-driven ultra-fast musculoskeletal MRI, MRI-based synthetic CT, quantitative MRI, modern low-field MRI, 7.0 T MRI, dual-energy CT, cone beam CT, kinematic CT, and synthetic contrast generation in musculoskeletal MRI.
PMID: 36484774
ISSN: 1536-0210
CID: 5381722

Artificial Intelligence-Driven Ultra-Fast Superresolution MRI: 10-Fold Accelerated Musculoskeletal Turbo Spin Echo MRI Within Reach

Lin, Dana J; Walter, Sven S; Fritz, Jan
Magnetic resonance imaging (MRI) is the keystone of modern musculoskeletal imaging; however, long pulse sequence acquisition times may restrict patient tolerability and access. Advances in MRI scanners, coil technology, and innovative pulse sequence acceleration methods enable 4-fold turbo spin echo pulse sequence acceleration in clinical practice; however, at this speed, conventional image reconstruction approaches the signal-to-noise limits of temporal, spatial, and contrast resolution. Novel deep learning image reconstruction methods can minimize signal-to-noise interdependencies to better advantage than conventional image reconstruction, leading to unparalleled gains in image speed and quality when combined with parallel imaging and simultaneous multislice acquisition. The enormous potential of deep learning-based image reconstruction promises to facilitate the 10-fold acceleration of the turbo spin echo pulse sequence, equating to a total acquisition time of 2-3 minutes for entire MRI examinations of joints without sacrificing spatial resolution or image quality. Current investigations aim for a better understanding of stability and failure modes of image reconstruction networks, validation of network reconstruction performance with external data sets, determination of diagnostic performances with independent reference standards, establishing generalizability to other centers, scanners, field strengths, coils, and anatomy, and building publicly available benchmark data sets to compare methods and foster innovation and collaboration between the clinical and image processing community. In this article, we review basic concepts of deep learning-based acquisition and image reconstruction techniques for accelerating and improving the quality of musculoskeletal MRI, commercially available and developing deep learning-based MRI solutions, superresolution, denoising, generative adversarial networks, and combined strategies for deep learning-driven ultra-fast superresolution musculoskeletal MRI. This article aims to equip radiologists and imaging scientists with the necessary practical knowledge and enthusiasm to meet this exciting new era of musculoskeletal MRI.
PMID: 36355637
ISSN: 1536-0210
CID: 5381592

Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology: An Overview of Novel MRI- and CT-Based Approaches

Fritz, Benjamin; Yi, Paul H; Kijowski, Richard; Fritz, Jan
ABSTRACT/UNASSIGNED:Radiomics and machine learning-based methods offer exciting opportunities for improving diagnostic performance and efficiency in musculoskeletal radiology for various tasks, including acute injuries, chronic conditions, spinal abnormalities, and neoplasms. While early radiomics-based methods were often limited to a smaller number of higher-order image feature extractions, applying machine learning-based analytic models, multifactorial correlations, and classifiers now permits big data processing and testing thousands of features to identify relevant markers. A growing number of novel deep learning-based methods describe magnetic resonance imaging- and computed tomography-based algorithms for diagnosing anterior cruciate ligament tears, meniscus tears, articular cartilage defects, rotator cuff tears, fractures, metastatic skeletal disease, and soft tissue tumors. Initial radiomics and deep learning techniques have focused on binary detection tasks, such as determining the presence or absence of a single abnormality and differentiation of benign versus malignant. Newer-generation algorithms aim to include practically relevant multiclass characterization of detected abnormalities, such as typing and malignancy grading of neoplasms. So-called delta-radiomics assess tumor features before and after treatment, with temporal changes of radiomics features serving as surrogate markers for tumor responses to treatment. New approaches also predict treatment success rates, surgical resection completeness, and recurrence risk. Practice-relevant goals for the next generation of algorithms include diagnostic whole-organ and advanced classification capabilities. Important research objectives to fill current knowledge gaps include well-designed research studies to understand how diagnostic performances and suggested efficiency gains of isolated research settings translate into routine daily clinical practice. This article summarizes current radiomics- and machine learning-based magnetic resonance imaging and computed tomography approaches for musculoskeletal disease detection and offers a perspective on future goals and objectives.
PMID: 36070548
ISSN: 1536-0210
CID: 5337042

Modern Low-Field MRI of the Musculoskeletal System: Practice Considerations, Opportunities, and Challenges

Khodarahmi, Iman; Keerthivasan, Mahesh B; Brinkmann, Inge M; Grodzki, David; Fritz, Jan
ABSTRACT/UNASSIGNED:Magnetic resonance imaging (MRI) provides essential information for diagnosing and treating musculoskeletal disorders. Although most musculoskeletal MRI examinations are performed at 1.5 and 3.0 T, modern low-field MRI systems offer new opportunities for affordable MRI worldwide. In 2021, a 0.55 T modern low-field, whole-body MRI system with an 80-cm-wide bore was introduced for clinical use in the United States and Europe. Compared with current higher-field-strength MRI systems, the 0.55 T MRI system has a lower total ownership cost, including purchase price, installation, and maintenance. Although signal-to-noise ratios scale with field strength, modern signal transmission and receiver chains improve signal yield compared with older low-field magnetic resonance scanner generations. Advanced radiofrequency coils permit short echo spacing and overall compacter echo trains than previously possible. Deep learning-based advanced image reconstruction algorithms provide substantial improvements in perceived signal-to-noise ratios, contrast, and spatial resolution. Musculoskeletal tissue contrast evolutions behave differently at 0.55 T, which requires careful consideration when designing pulse sequences. Similar to other field strengths, parallel imaging and simultaneous multislice acquisition techniques are vital for efficient musculoskeletal MRI acquisitions. Pliable receiver coils with a more cost-effective design offer a path to more affordable surface coils and improve image quality. Whereas fat suppression is inherently more challenging at lower field strengths, chemical shift selective fat suppression is reliable and homogeneous with modern low-field MRI technology. Dixon-based gradient echo pulse sequences provide efficient and reliable multicontrast options, including postcontrast MRI. Metal artifact reduction MRI benefits substantially from the lower field strength, including slice encoding for metal artifact correction for effective metal artifact reduction of high-susceptibility metallic implants. Wide-bore scanner designs offer exciting opportunities for interventional MRI. This review provides an overview of the economical aspects, signal and image quality considerations, technological components and coils, musculoskeletal tissue relaxation times, and image contrast of modern low-field MRI and discusses the mainstream and new applications, challenges, and opportunities of musculoskeletal MRI.
PMID: 36165841
ISSN: 1536-0210
CID: 5334182

Emerging Technology in Musculoskeletal MRI and CT

Kijowski, Richard; Fritz, Jan
This article provides a focused overview of emerging technology in musculoskeletal MRI and CT. These technological advances have primarily focused on decreasing examination times, obtaining higher quality images, providing more convenient and economical imaging alternatives, and improving patient safety through lower radiation doses. New MRI acceleration methods using deep learning and novel reconstruction algorithms can reduce scanning times while maintaining high image quality. New synthetic techniques are now available that provide multiple tissue contrasts from a limited amount of MRI and CT data. Modern low-field-strength MRI scanners can provide a more convenient and economical imaging alternative in clinical practice, while clinical 7.0-T scanners have the potential to maximize image quality. Three-dimensional MRI curved planar reformation and cinematic rendering can provide improved methods for image representation. Photon-counting detector CT can provide lower radiation doses, higher spatial resolution, greater tissue contrast, and reduced noise in comparison with currently used energy-integrating detector CT scanners. Technological advances have also been made in challenging areas of musculoskeletal imaging, including MR neurography, imaging around metal, and dual-energy CT. While the preliminary results of these emerging technologies have been encouraging, whether they result in higher diagnostic performance requires further investigation.
PMID: 36413131
ISSN: 1527-1315
CID: 5384152

MRI evaluation of soft tissue tumors: comparison of a fast, isotropic, 3D T2-weighted fat-saturated sequence with a conventional 2D T2-weighted fat-saturated sequence for tumor characteristics, resolution, and acquisition time

de Castro Luna, Rodrigo; Kumar, Neil M; Fritz, Jan; Ahlawat, Shivani; Fayad, Laura M
OBJECTIVES/OBJECTIVE:To test whether a 4-fold accelerated 3D T2-weighted (T2) CAIPIRINHA SPACE TSE sequence with isotropic voxel size is equivalent to conventional 2DT2 TSE for the evaluation of intrinsic and perilesional soft tissue tumors (STT) characteristics. METHODS:For 108 patients with histologically-proven STTs, MRI, including 3DT2 (CAIPIRINHA SPACE TSE) and 2DT2 (TSE) sequences, was performed. Two radiologists evaluated each sequence for quality (diagnostic, non-diagnostic), tumor characteristics (heterogeneity, signal intensity, margin), and the presence or absence of cortical involvement, marrow edema, and perilesional edema (PLE); tumor size and PLE extent were measured. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios and acquisition times for 2DT2 in two planes and 3DT2 sequences were reported. Descriptive statistics and inter-method agreement were reported. RESULTS:Image quality was diagnostic for all sequences (100% [108/108]). No difference was observed between 3DT2 and 2DT2 tumor characteristics (p < 0.05). There was no difference in mean tumor size (3DT2: 2.9 ± 2.5 cm, 2DT2: 2.8 ± 2.6 cm, p = 0.4) or PLE extent (3DT2:0.5 ± 1.2 cm, 2DT2:0.5 ± 1.0 cm, p = 0.9) between the sequences. There was no difference in the SNR of tumors, marrow, and fat between the sequences, whereas the SNR of muscle was higher (p < 0.05) on 3DT2 than 2DT2. CNR measures on 3DT2 were similar to 2DT2 (p > 0.1). The average acquisition time was shorter for 3DT2 compared with 2DT2 (343 ± 127 s vs 475 ± 162 s, respectively). CONCLUSION/CONCLUSIONS:Isotropic 3DT2 MRI offers higher spatial resolution, faster acquisition times, and equivalent assessments of STT characteristics compared to conventional 2DT2 MRI in two planes. 3DT2 is interchangeable with a 2DT2 sequence in tumor protocols. KEY POINTS/CONCLUSIONS:• Isotropic 3DT2 CAIPIRINHA SPACE TSE offers higher spatial resolution than 2DT2 TSE and is equivalent to 2DT2 TSE for assessments of soft tissue tumor intrinsic and perilesional characteristics. • Multiplanar reformats of 3DT2 CAIPIRINHA SPACE TSE can substitute for 2DT2 TSE acquired in multiple planes, thereby reducing the acquisition time of MRI tumor protocols. • 3DT2 CAIPIRINHA SPACE TSE and 2DT2 TSE had similar CNR of tissues.
PMID: 35751699
ISSN: 1432-1084
CID: 5282382

Metal Artifact Reduction MRI in the Diagnosis of Periprosthetic Hip Joint Infection

Murthy, Sindhoora; Fritz, Jan
A 54-year-old woman presented with progressive right hip pain after hip arthroplasty 9 years earlier. The emerging role of metal artifact reduction MRI in the noninvasive diagnosis of infectious synovitis as the surrogate marker for periprosthetic hip joint infection and differentiation from other synovitis types is discussed.
PMID: 36318029
ISSN: 1527-1315
CID: 5358532