Try a new search

Format these results:

Searched for:

in-biosketch:true

person:goldbi05

Total Results:

304


A Simple, Rapid, And Sensitive Fluorescence-based Method To Assess Triacylglycerol Hydrolase Activities [Meeting Abstract]

Rajan, Sujith; De Guzman, Hazel C.; Palaia, Thomas; Goldberg, Ira J.; Hussain, M.
ISI:000861072500071
ISSN: 1079-5642
CID: 5479792

Lipid Management in Patients with Endocrine Disorders: An Endocrine Society Clinical Practice Guideline

Newman, Connie B; Blaha, Michael J; Boord, Jeffrey B; Cariou, Bertrand; Chait, Alan; Fein, Henry G; Ginsberg, Henry N; Goldberg, Ira J; Murad, M Hassan; Subramanian, Savitha; Tannock, Lisa R
OBJECTIVE:This guideline will provide the practicing endocrinologist with an approach to the assessment and treatment of dyslipidemia in patients with endocrine diseases, with the objective of preventing cardiovascular (CV) events and triglyceride-induced pancreatitis. The guideline reviews data on dyslipidemia and atherosclerotic cardiovascular disease (ASCVD) risk in patients with endocrine disorders and discusses the evidence for the correction of dyslipidemia by treatment of the endocrine disease. The guideline also addresses whether treatment of the endocrine disease reduces ASCVD risk. CONCLUSION/CONCLUSIONS:This guideline focuses on lipid and lipoprotein abnormalities associated with endocrine diseases, including diabetes mellitus, and whether treatment of the endocrine disorder improves not only the lipid abnormalities, but also CV outcomes. Based on the available evidence, recommendations are made for the assessment and management of dyslipidemia in patients with endocrine diseases.
PMID: 32951056
ISSN: 1945-7197
CID: 4735422

Transient Intermittent Hyperglycemia Accelerates Atherosclerosis by Promoting Myelopoiesis

Flynn, Michelle C; Kraakman, Michael J; Tikellis, Christos; Lee, Man Ks; Hanssen, Nordin Mj; Kammoun, Helene L; Pickering, Raelene; Dragoljevic, Dragana; Al-Sharea, Annas; Barrett, Tessa J; Hortle, Fiona; Byrne, Frances L; Olzomer, Ellen; McCarthy, Domenica A; Schalkwijk, Casper G; Forbes, Josephine M; Hoehn, Kyle; Makowski, Liza; Lancaster, Graeme I; El-Osta, Assam; Fisher, Edward A; Goldberg, Ira J; Cooper, Mark E; Nagareddy, Prabhakara R; Thomas, Merlin C; Murphy, Andrew J
Rationale: Treatment efficacy for diabetes is largely determined by assessment of HbA1c levels, which poorly reflects direct glucose variation. People with pre-diabetes and diabetes spend >50% of their time outside the optimal glucose range. These glucose variations, termed transient intermittent hyperglycemia (TIH) appear to be an independent risk-factor for cardiovascular disease (CVD) but the pathological basis for this association is unclear. Objective: To determine whether TIH per se promotes myelopoiesis to produce more monocytes and consequently adversely affects atherosclerosis. Methods and Results: To create a mouse model of TIH we administered 4 bolus doses of glucose at 2hr intervals intraperitoneally once to wild-type (WT) or once weekly to atherosclerotic prone mice. TIH accelerated atherogenesis without an increase in plasma cholesterol, seen in traditional models of diabetes. TIH promoted myelopoiesis in the bone marrow, resulting in increased circulating monocytes, particularly the inflammatory Ly6-Chi subset, and neutrophils. Hematopoietic-restricted deletion of S100a9, S100a8 or its cognate receptor Rage, prevented monocytosis. Mechanistically, glucose uptake via GLUT-1 and enhanced glycolysis in neutrophils promoted the production of S100A8/A9. Myeloid-restricted deletion of Slc2a1 (GLUT-1) or pharmacological inhibition of S100A8/A9 reduced TIH-induced myelopoiesis and atherosclerosis. Conclusions: Together, these data provide a mechanism as to how TIH, prevalent in people with impaired glucose metabolism, contributes to CVD. These findings provide a rationale for continual glucose control in these patients and may also suggest that strategies aimed at targeting the S100A8/A9-RAGE axis could represent a viable approach to protect the vulnerable blood vessels in diabetes.
PMID: 32564710
ISSN: 1524-4571
CID: 4514372

Regulation of lipoprotein lipase-mediated lipolysis of triglycerides

Basu, Debapriya; Goldberg, Ira J
PURPOSE OF REVIEW/OBJECTIVE:To discuss the recent developments in structure, function and physiology of lipoprotein lipase (LpL) and the regulators of LpL, which are being targeted for therapy. RECENT FINDINGS/RESULTS:Recent studies have revealed the long elusive crystal structure of LpL and its interaction with glycosylphosphatidylinositol anchored high-density lipoprotein binding protein 1 (GPIHBP1). New light has been shed on LpL being active as a monomer, which brings into questions previous thinking that LpL inhibitors like angiopoietin-like 4 (ANGPTL4) and stabilizers like LMF1 work on disrupting or maintaining LpL in dimer form. There is increasing pharmaceutical interest in developing targets to block LpL inhibitors like ANGPTL3. Other approaches to reducing circulating triglyceride levels have been using an apoC2 mimetic and reducing apoC3. SUMMARY/CONCLUSIONS:Lipolysis of triglyceride-rich lipoproteins by LpL is a central event in lipid metabolism, releasing fatty acids for uptake by tissues and generating low-density lipoprotein and expanding high-density lipoprotein. Recent mechanistic insights into the structure and function of LpL have added to our understanding of triglyceride metabolism. This has also led to heightened interest in targeting its posttranslational regulators, which can be the next generation of lipid-lowering agents used to prevent hypertriglyceridemic pancreatitis and, hopefully, cardiovascular disease.
PMID: 32332431
ISSN: 1473-6535
CID: 4464392

CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors

Wang, Haiping; Franco, Fabien; Tsui, Yao-Chen; Xie, Xin; Trefny, Marcel P; Zappasodi, Roberta; Mohmood, Syed Raza; Fernández-García, Juan; Tsai, Chin-Hsien; Schulze, Isabell; Picard, Florence; Meylan, Etienne; Silverstein, Roy; Goldberg, Ira; Fendt, Sarah-Maria; Wolchok, Jedd D; Merghoub, Taha; Jandus, Camilla; Zippelius, Alfred; Ho, Ping-Chih
Depleting regulatory T cells (Treg cells) to counteract immunosuppressive features of the tumor microenvironment (TME) is an attractive strategy for cancer treatment; however, autoimmunity due to systemic impairment of their suppressive function limits its therapeutic potential. Elucidating approaches that specifically disrupt intratumoral Treg cells is direly needed for cancer immunotherapy. We found that CD36 was selectively upregulated in intrautumoral Treg cells as a central metabolic modulator. CD36 fine-tuned mitochondrial fitness via peroxisome proliferator-activated receptor-β signaling, programming Treg cells to adapt to a lactic acid-enriched TME. Genetic ablation of Cd36 in Treg cells suppressed tumor growth accompanied by a decrease in intratumoral Treg cells and enhancement of antitumor activity in tumor-infiltrating lymphocytes without disrupting immune homeostasis. Furthermore, CD36 targeting elicited additive antitumor responses with anti-programmed cell death protein 1 therapy. Our findings uncover the unexplored metabolic adaptation that orchestrates the survival and functions of intratumoral Treg cells, and the therapeutic potential of targeting this pathway for reprogramming the TME.
PMID: 32066953
ISSN: 1529-2916
CID: 4312102

A dual apolipoprotein C-II mimetic-apolipoprotein C-III antagonist peptide lowers plasma triglycerides

Wolska, Anna; Lo, Larry; Sviridov, Denis O; Pourmousa, Mohsen; Pryor, Milton; Ghosh, Soumitra S; Kakkar, Rahul; Davidson, Michael; Wilson, Sierra; Pastor, Richard W; Goldberg, Ira J; Basu, Debapriya; Drake, Steven K; Cougnoux, Antony; Wu, Ming Jing; Neher, Saskia B; Freeman, Lita A; Tang, Jingrong; Amar, Marcelo; Devalaraja, Matt; Remaley, Alan T
Recent genetic studies have established that hypertriglyceridemia (HTG) is causally related to cardiovascular disease, making it an active area for drug development. We describe a strategy for lowering triglycerides (TGs) with an apolipoprotein C-II (apoC-II) mimetic peptide called D6PV that activates lipoprotein lipase (LPL), the main plasma TG-hydrolyzing enzyme, and antagonizes the TG-raising effect of apoC-III. The design of D6PV was motivated by a combination of all-atom molecular dynamics simulation of apoC-II on the Anton 2 supercomputer, structural prediction programs, and biophysical techniques. Efficacy of D6PV was assessed ex vivo in human HTG plasma and was found to be more potent than full-length apoC-II in activating LPL. D6PV markedly lowered TG by more than 80% within a few hours in both apoC-II-deficient mice and hAPOC3-transgenic (Tg) mice. In hAPOC3-Tg mice, D6PV treatment reduced plasma apoC-III by 80% and apoB by 65%. Furthermore, low-density lipoprotein (LDL) cholesterol did not accumulate but rather was decreased by 10% when hAPOC3-Tg mice lacking the LDL-receptor (hAPOC3-Tg × Ldlr-/- ) were treated with the peptide. D6PV lowered TG by 50% in whole-body inducible Lpl knockout (iLpl-/- ) mice, confirming that it can also act independently of LPL. D6PV displayed good subcutaneous bioavailability of about 80% in nonhuman primates. Because it binds to high-density lipoproteins, which serve as a long-term reservoir, it also has an extended terminal half-life (42 to 50 hours) in nonhuman primates. In summary, D6PV decreases plasma TG by acting as a dual apoC-II mimetic and apoC-III antagonist, thereby demonstrating its potential as a treatment for HTG.
PMID: 31996466
ISSN: 1946-6242
CID: 4294262

Atherosclerosis: Making a U Turn

Goldberg, Ira J; Sharma, Gaurav; Fisher, Edward A
The development of potent cholesterol-reducing medications in the last decade of the twentieth century has altered the approach to prevention and treatment of cardiovascular disease (CVD). Initial experience with statins, and more recently with the addition of PCSK9 inhibitors, has proven that human CVD, like that in animal models, can be halted and regressed. Available clinical data show that the lower the achieved level of low-density lipoprotein cholesterol, the greater the regression of disease. Investigative studies are now aimed to understand those factors that both accelerate and impede this healing process. Some of these are likely to be modifiable, and the future of atherosclerotic CVD treatment is likely to be early screening, use of measures to repair atherosclerotic arteries, and prevention of most CVD events.
PMID: 31986087
ISSN: 1545-326x
CID: 4293952

High-density lipoprotein cholesterol efflux capacity is not associated with atherosclerosis and prevalence of cardiovascular outcome: The CODAM study

Josefs, Tatjana; Wouters, Kristiaan; Tietge, Uwe J F; Annema, Wijtske; Dullaart, Robin P F; Vaisar, Tomas; Arts, Ilja C W; van der Kallen, Carla J H; Stehouwer, Coen D A; Schalkwijk, Casper G; Goldberg, Ira J; Fisher, Edward A; van Greevenbroek, Marleen M J
BACKGROUND:Cholesterol Efflux Capacity (CEC) is considered to be a key atheroprotective property of high-density lipoproteins (HDL). However, the role of HDL-CEC in atherosclerosis and cardiovascular (CV) risk is still controversial, and data in individuals with diabetes are limited. OBJECTIVE:In this study, we have investigated the relationship of CEC and other HDL characteristics with clinical and subclinical atherosclerosis in subjects with elevated cardiovascular diseases (CVD) risk and Type 2 Diabetes Mellitus (T2DM). METHODS:Using multiple linear regression analyses, we determined the relationship of HDL-CEC with carotid intima-media thickness (cIMT, Z-Score), an endothelial dysfunction (EnD) Score (Z-Score), prevalent CVD (n = 150 cases) and history of CV events (CVE, n = 85 cases) in an observational cohort (CODAM, n = 574, 59.6 ± 0.3 yr, 61.3% men, 24.4% T2DM). Stratified analyses were performed to determine if the associations differed between individuals with normal glucose metabolism (NGM) and those with disturbed glucose metabolism. RESULTS: = .074 and .034, respectively), but not in those with NGM. CONCLUSION/CONCLUSIONS:HDL-CEC is not associated with clinical or subclinical atherosclerosis, neither in the whole population nor in individuals with (pre)diabetes, while other HDL characteristics show atheroprotective associations. The atheroprotective associations of HDL-size and HDL-P are lost in (pre)diabetes, while higher concentrations of HDL-C and apoA-I are associated with a lower prevalence of CVD in (pre)diabetes.
PMID: 31791716
ISSN: 1933-2874
CID: 4271582

Endothelial cell CD36 deficiency prevents normal angiogenesis and vascular repair

Bou Khzam, Lara; Son, Ni-Huiping; Mullick, Adam E; Abumrad, Nada A; Goldberg, Ira J
Endothelial cells (ECs) maintain vascular integrity and mediate vascular repair and angiogenesis, by which new blood vessels are formed from pre-existing blood vessels. Hyperglycemia has been shown to increase EC angiogenic potential. However, few studies have investigated effects of fatty acids (FAs) on EC angiogenesis. Cluster of differentiation 36 (CD36) is a FA transporter expressed by ECs, but its role in EC proliferation, migration, and angiogenesis is unknown. We sought to determine if circulating FAs regulate angiogenic function in a CD36-dependent manner. CD36-dependent effects of FAs on EC proliferation and migration of mouse heart ECs (MHECs) and lung ECs (MLECs) were studied. We used both silencing RNA and antisense oligonucleotides to reduce CD36 expression. Oleic acid (OA) did not affect EC proliferation, but significantly increased migration of ECs in wound healing experiments. CD36 knockdown prevented OA-induced increases in wound healing potential. In EC transwell migration experiments, OA increased recruitment and migration of ECs, an effect abolished by CD36 knockdown. Phospho-AMP-activated protein kinase (AMPK) increased in MHECs exposed to OA in a CD36-dependent manner. To test whether in vivo CD36 affects angiogenesis, we studied 21-day recovery in post-hindlimb ischemia. EC-specific CD36 knockout mice had reduced blood flow recovery as assessed by laser Doppler imaging. EC content in post-ischemic muscle, assessed from CD31 expression, increased in ischemic muscle of control mice. However, mice with EC-specific CD36 deletion lacked the increase in CD31 and matrix metalloprotease 9 expression observed in controls. EC expression of CD36 and its function in FA uptake modulate angiogenic function and response to ischemia, likely due to reduced activation of the AMPK pathway.
PMCID:7791529
PMID: 33437358
ISSN: 1943-8141
CID: 4771472

Continuous Glucose Monitor Predicts Glycemic Variability in High-Risk Individuals with HbA1c < 5.7% [Meeting Abstract]

Dorcely, Brenda; Sifonte, Eliud; Divakaran, Anjana; Katz, Karin; Jagannathan, Ram; Goldberg, Ira J.; Bergman, Michael
ISI:000554509802111
ISSN: 0012-1797
CID: 4604612