Try a new search

Format these results:

Searched for:

in-biosketch:true

person:kijowr01

Total Results:

136


Knee imaging: Rapid three-dimensional fast spin-echo using compressed sensing

Kijowski, Richard; Rosas, Humberto; Samsonov, Alexey; King, Kevin; Peters, Rob; Liu, Fang
PURPOSE:To investigate the feasibility of using compressed sensing (CS) to accelerate three-dimensional fast spin-echo (3D-FSE) imaging of the knee. MATERIALS AND METHODS:A 3D-FSE sequence was performed at 3T with CS (CUBE-CS with 3:16-minute scan time) and without CS (CUBE with 4:44-minute scan time) twice on the knees of 10 healthy volunteers to assess signal-to-noise ratio (SNR) using the addition-subtraction method and once on the knees of 50 symptomatic patients to assess diagnostic performance. SNR of cartilage, muscle, synovial fluid, and bone marrow on CUBE and CUBE-CS images were measured in the 10 healthy volunteers. The CUBE and CUBE-CS sequences of all 50 symptomatic patients were independently reviewed twice by two musculoskeletal radiologists. The radiologists used CUBE and CUBE-CS during each individual review to determine the presence or absence of knee joint pathology. Student's t-tests were used to compare SNR values between sequences, while the kappa statistic was used to determine agreement between sequences for detecting knee joint pathology. Sensitivity and specificity of CUBE and CUBE-CS for detecting knee joint pathology was also calculated in the 18 symptomatic patients who underwent subsequent arthroscopic knee surgery. RESULTS:CUBE and CUBE-CS had similar SNR (P = 0.15-0.67) of cartilage, muscle, synovial fluid, and bone marrow. There was near-perfect to perfect agreement between CUBE and CUBE-CS for both radiologists for detecting cartilage and bone marrow edema lesions, medial and lateral meniscus tears, anterior cruciate ligament tears, effusions, and intra-articular bodies. CUBE and CUBE-CS had similar sensitivity (75.0-100%) and specificity (87.5-100%) for detecting 60 cartilage lesions, 20 meniscus tears, four anterior cruciate ligament tears, and four intra-articular bodies confirmed at surgery. CONCLUSION:CS provided a 30% reduction in scan time for 3D-FSE imaging of the knee without a corresponding decrease in SNR or diagnostic performance. LEVEL OF EVIDENCE:1 J. MAGN. RESON. IMAGING 2017;45:1712-1722.
PMCID:5388597
PMID: 27726244
ISSN: 1522-2586
CID: 4467122

Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model

Liu, Fang; Velikina, Julia V; Block, Walter F; Kijowski, Richard; Samsonov, Alexey A
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed  ∼ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.
PMCID:5322984
PMID: 28113746
ISSN: 1558-254x
CID: 4467132

Assessment of different fitting methods for in-vivo bi-component T2* analysis of human patellar tendon in magnetic resonance imaging

Liu, Fang; Kijowski, Richard
PURPOSE/OBJECTIVE:) relaxation time analysis of human patellar tendon. METHODS:parameter estimation in tendon at different signal-to-noise ratios (SNR) levels. RESULTS:analysis of tendon agreed well with numerical simulations. CONCLUSION/CONCLUSIONS:analysis especially at lower SNR. LEVEL OF EVIDENCE/METHODS:IV.
PMCID:5505585
PMID: 28717625
ISSN: 2240-4554
CID: 4467162

Proximal forearm extensor muscle strain is reduced when driving nails using a shock-controlled hammer

Buchanan, Kimberly A; Maza, Maria; Pérez-Vázquez, Carlos E; Yen, Thomas Y; Kijowski, Richard; Liu, Fang; Radwin, Robert G
BACKGROUND:Repetitive hammer use has been associated with strain and musculoskeletal injuries. This study investigated if using a shock-control hammer reduces forearm muscle strain by observing adverse physiological responses (i.e. inflammation and localized edema) after use. METHODS:Three matched framing hammers were studied, including a wood-handle, steel-handle, and shock-control hammer. Fifty volunteers were randomly assigned to use one of these hammers at a fatiguing pace of one strike every second, to seat 20 nails in a wood beam. Magnetic resonance imaging was used to scan the forearm muscles for inflammation before the task, immediately after hammering, and one to two days after. Electromyogram signals were measured to estimate grip exertions and localized muscle fatigue. High-speed video was used to calculate the energy of nail strikes. FINDINGS:While estimated grip force was similar across the three hammers, the shock-control hammer had 40% greater kinetic energy upon impact and markedly less proximal extensor muscle edema than the wood-handle and steel-handle hammers, immediately after use (p<.05). INTERPRETATION:Less edema observed for the shock-control hammer suggests that isolating handle shock can mitigate strain in proximal forearm extensor muscles.
PMID: 27542101
ISSN: 1879-1271
CID: 4467112

Accuracy of model-based tracking of knee kinematics and cartilage contact measured by dynamic volumetric MRI

Kaiser, Jarred; Monawer, Arezu; Chaudhary, Rajeev; Johnson, Kevin M; Wieben, Oliver; Kijowski, Richard; Thelen, Darryl G
The purpose of this study was to determine the accuracy of knee kinematics and cartilage contact measured by volumetric dynamic MRI. A motor-actuated phantom drove femoral and tibial bone segments through cyclic 3D motion patterns. Volumetric images were continuously acquired using a 3D radially undersampled cine spoiled gradient echo sequence (SPGR-VIPR). Image data was binned based on position measured via a MRI-compatible rotary encoder. High-resolution static images were segmented to create bone models. Model-based tracking was performed by optimally registering the bone models to the volumetric images at each frame of the SPGR-VIPR series. 3D tibiofemoral translations and orientations were reconstructed, and compared to kinematics obtained by tracking fiducial markers. Imaging was repeated on a healthy subject who performed cyclic knee flexion-extension. Cartilage contact for the subject was assessed by measuring the overlap between articular cartilage surfaces. Model-based tracking was able to track tibiofemoral angles and translations with precisions less than 0.8° and 0.5mm. These precisions resulted in an uncertainty of less than 0.5mm in cartilage contact location. Dynamic SPGR-VIPR imaging can accurately assess in vivo knee kinematics and cartilage contact during voluntary knee motion performed in a MRI scanner. This technology could facilitate the quantitative investigation of links between joint mechanics and the development of osteoarthritis.
PMCID:5035576
PMID: 27387902
ISSN: 1873-4030
CID: 4467102

Analysis of mcDESPOT- and CPMG-derived parameter estimates for two-component nonexchanging systems

Bouhrara, Mustapha; Reiter, David A; Celik, Hasan; Fishbein, Kenneth W; Kijowski, Richard; Spencer, Richard G
PURPOSE:To compare the reliability and stability of the multicomponent-driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) and Carl-Purcell-Meiboom-Gill (CPMG) approaches to parameter estimation. METHODS:The stability and reliability of mcDESPOT and CPMG-derived parameter estimates were compared through examination of energy surfaces, evaluation of model sloppiness, and Monte Carlo simulations. Comparisons were performed on an equal time basis and assuming a two-component system. Parameter estimation bias, reflecting accuracy, and dispersion, reflecting precision, were derived for a range of signal-to-noise ratios (SNRs) and relaxation parameters. RESULTS:The energy surfaces for parameters incorporated into the mcDESPOT signal model exhibit flatness, a complex structure of local minima, and instability to noise to a much greater extent than the corresponding surfaces for CPMG. Although both mcDESPOT and CPMG performed well at high SNR, the CPMG approach yielded parameter estimates of considerably greater accuracy and precision at lower SNR. CONCLUSION:mcDESPOT and CPMG both permit high-quality parameter estimates under SNR that are clinically achievable under many circumstances, depending upon available hardware and resolution and acquisition time constraints. At moderate to high SNR, the mcDESPOT approach incorporating two-step phase increments can yield accurate parameter estimates while providing values for longitudinal relaxation times that are not available through CPMG. However, at low SNR, the CPMG approach is more stable and provides superior parameter estimates. Magn Reson Med 75:2406-2420, 2016. © 2015 Wiley Periodicals, Inc.
PMCID:5958911
PMID: 26140371
ISSN: 1522-2594
CID: 4467052

Multicomponent T2 analysis of articular cartilage with synovial fluid partial volume correction

Liu, Fang; Chaudhary, Rajeev; Block, Walter F; Samsonov, Alexey; Kijowski, Richard
PURPOSE/OBJECTIVE:To investigate the use of a three-pool model to account for the confounding effects of synovial fluid on multicomponent T2 analysis of articular cartilage using Multicomponent Driven Equilibrium Single Shot Observation of T1 and T2 (mcDESPOT). MATERIALS AND METHODS/METHODS:mcDESPOT was performed on the knee of eight asymptomatic volunteers and eight patients with osteoarthritis at 3.0T with multicomponent T2 maps created using the two-pool model and a three-pool model containing a nonexchanging synovial fluid water pool. The fraction of the fast-relaxing water component (FF ) and the T2 relaxation times for the fast-relaxing (T2F ) and slow-relaxing (T2S ) water components were measured in the superficial and deep layers of patellar cartilage using the two-pool and three-pool models in asymptomatic volunteers and patients with osteoarthritis and were compared using Wilcoxon signed rank tests. RESULTS:Within the superficial layer of patellar cartilage, FF was 22.5% and 25.6% for asymptomatic volunteers and 21.3% and 22.8% for patients with osteoarthritis when using the two-pool and three-pool models, respectively, while T2S was 73.9 msec and 62.0 msec for asymptomatic volunteers and 72.0 msec and 63.1 msec for patients with osteoarthritis when using the two-pool and three-pool models, respectively. For both asymptomatic volunteers and patients with osteoarthritis, the two-pool model provided significantly (P < 0.05) lower FF and higher T2S than the three-pool model, likely due to the effects of synovial fluid partial volume averaging. CONCLUSION/CONCLUSIONS:The effects of partial volume averaging between superficial cartilage and synovial fluid may result in biased multicomponent T2 measurements that can be corrected using an mcDESPOT three-pool model containing a nonexchanging synovial fluid water pool.
PMCID:4878387
PMID: 26435385
ISSN: 1522-2586
CID: 4467082

American Society of Biomechanics Clinical Biomechanics Award 2015: MRI assessments of cartilage mechanics, morphology and composition following reconstruction of the anterior cruciate ligament [Comment]

Kaiser, Jarred; Vignos, Michael F; Liu, Fang; Kijowski, Richard; Thelen, Darryl G
BACKGROUND:The pathogenesis of osteoarthritis following anterior cruciate ligament (ACL) reconstruction is currently unknown. The study purpose was to leverage recent advances in quantitative and dynamic MRI to test the hypothesis that abnormal joint mechanics within four years of reconstruction is accompanied by evidence of early compositional changes in cartilage. METHODS:Static MR imaging was performed bilaterally on eleven subjects with an ACL reconstruction (1-4years post-surgery) and on twelve healthy subjects to obtain tibial cartilage thickness maps. Quantitative imaging (mcDESPOT) was performed unilaterally on all subjects to assess the fraction of bound water in the tibial plateau cartilage. Finally, volumetric dynamic imaging was performed to assess cartilage contact patterns during an active knee flexion-extension task. A repeated-measures ANOVA was used to test for the effects of surgical reconstruction and location on cartilage thickness, bound water fractions, and contact across the medial and lateral tibia plateaus. FINDINGS:No significant differences in cartilage thickness were found between groups. However, there was a significant reduction in the fraction of water bound by proteoglycan in the ACL reconstructed knees, most notably along the anterior portion of the medial plateau and the weight-bearing lateral plateau. During movement, reconstructed knees exhibited greater contact along the medial spine in the medial plateau and along the posterior aspect of the lateral plateau, when compared with their healthy contralateral knees and healthy controls. INTERPRETATION:This study provides evidence that abnormal mechanics in anterior cruciate ligament reconstructed knees are present coincidently with early biomarkers of cartilage degeneration.
PMID: 27061359
ISSN: 1879-1271
CID: 4467092

Rapid multicomponent relaxometry in steady state with correction of magnetization transfer effects

Liu, Fang; Block, Walter F; Kijowski, Richard; Samsonov, Alexey
PURPOSE/OBJECTIVE:To study the effects of magnetization transfer (MT) on multicomponent T2 parameters obtained using mcDESPOT in macromolecule-rich tissues and to propose a new method called mcRISE to correct MT-induced biases. METHODS:The two-pool mcDESPOT model was modified by the addition of an exchanging macromolecule proton pool to model the MT effect in cartilage. The mcRISE acquisition scheme was developed to provide sensitivity to all pools. An incremental fitting was applied to estimate MT and relaxometry parameters with minimized coupling. The interaction between MT and relaxometry parameters, efficacy of MT correction, and feasibility of mcRISE in vivo were investigated in simulations and in healthy volunteers. RESULTS:The MT effect caused significant errors in multicomponent T1/T2 values and in fast-relaxing water fraction fF , which is consistent with previous experimental observations. fF increased significantly with macromolecule content if MT was ignored. mcRISE resulted in a multifold reduction of MT biases and yielded decoupled multicomponent T1/T2 relaxometry and quantitative MT parameters. CONCLUSION/CONCLUSIONS:mcRISE is an efficient approach for correcting MT biases in multicomponent relaxometry based on steady state sequences. Improved specificity of mcRISE may help to elucidate the sources of the previously described high sensitivity of noncorrected mcDESPOT parameters to disease-related changes in cartilage and the brain.
PMCID:4637271
PMID: 25959974
ISSN: 1522-2594
CID: 4467032

Utilization of a balanced steady state free precession signal model for improved fat/water decomposition

Henze Bancroft, Leah C; Strigel, Roberta M; Hernando, Diego; Johnson, Kevin M; Kelcz, Frederick; Kijowski, Richard; Block, Walter F
PURPOSE/OBJECTIVE:Chemical shift based fat/water decomposition methods such as IDEAL are frequently used in challenging imaging environments with large B0 inhomogeneity. However, they do not account for the signal modulations introduced by a balanced steady state free precession (bSSFP) acquisition. Here we demonstrate improved performance when the bSSFP frequency response is properly incorporated into the multipeak spectral fat model used in the decomposition process. THEORY AND METHODS/METHODS:Balanced SSFP allows for rapid imaging but also introduces a characteristic frequency response featuring periodic nulls and pass bands. Fat spectral components in adjacent pass bands will experience bulk phase offsets and magnitude modulations that change the expected constructive and destructive interference between the fat spectral components. A bSSFP signal model was incorporated into the fat/water decomposition process and used to generate images of a fat phantom, and bilateral breast and knee images in four normal volunteers at 1.5 Tesla. RESULTS:Incorporation of the bSSFP signal model into the decomposition process improved the performance of the fat/water decomposition. CONCLUSION/CONCLUSIONS:Incorporation of this model allows rapid bSSFP imaging sequences to use robust fat/water decomposition methods such as IDEAL. While only one set of imaging parameters were presented, the method is compatible with any field strength or repetition time.
PMCID:5034725
PMID: 25946145
ISSN: 1522-2594
CID: 4467022