Try a new search

Format these results:

Searched for:

in-biosketch:true

person:nicolt01

Total Results:

73


Pure germinomas of the central nervous system: treatment strategies and outcomes

Schoenfeld, Adam; Haas-Kogan, Daphne A; Molinaro, Annette; Banerjee, Anu; Nicolaides, Theodore; Tihan, Tarik; Bollen, Andrew W; Gupta, Nalin; Mueller, Sabine
To evaluate the role of chemotherapy and radiation therapy in the treatment of pure germinomas of the central nervous system (CNS). We reviewed a historical cohort of 79 patients between the ages of 3-35 years who received definitive treatment for newly diagnosed, pure CNS germinoma between 1985 and 2010 at the University of California, San Francisco (UCSF). Median age at diagnosis was 15 years (interquartile range, IQR 12-20 years) and 61 (77.2 %) patients were male. Median follow-up for the cohort was 111.1 months (IQR 45.7-185.1 months). Five-year PFS rate was 86.4 % (95 % CI 76.1-92.4) and 5 year OS rate was 93.0 % (95 % CI 84.1-97.1). Median PFS was 104.6 months (IQR 41.4-170.1 months). Fourteen patients progressed and 8 died of their disease. Patients who received focal irradiation (XRT) and chemotherapy had a significantly higher rate of progression compared to those who received whole brain irradiation (WBI) or whole ventricle irradiation (WVI). Three of 8 patients had a PR to chemotherapy and received focal XRT progressed whereas only 1 of 9 patients who had a CR to chemotherapy who went on to receive focal XRT progressed. Elevation of hCGβ > 50 mIU/ml was not significantly associated with disease progression (HR 5.64, 95 % CI 0.97-32.7, p = 0.054). Patients treated with WBI or WVI with or without chemotherapy achieve better disease control compared to patients treated with focal XRT + chemotherapy.
PMID: 25189788
ISSN: 1573-7373
CID: 3318492

COMBINED BRAFV600E AND MEK INHIBITION FOR BRAFV600E-MUTANT ASTROCYTOMAS [Meeting Abstract]

Zhang, Jie; Hariono, Sujatmi; Yao, Tsun-Wen; Sidhu, Angadpreet; Hashizume, Rintaro; James, CDavid; Weiss, William A; Nicolaides, Theodore P
ISI:000327456200254
ISSN: 1523-5866
CID: 2766352

Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children

Cage, Tene A; Samagh, Sonia P; Mueller, Sabine; Nicolaides, Theodore; Haas-Kogan, Daphne; Prados, Michael; Banerjee, Anu; Auguste, Kurtis I; Gupta, Nalin
PURPOSE/OBJECTIVE:Diffuse intrinsic pontine gliomas (DIPGs) are rapidly progressive and aggressive tumors that usually arise in children. Their anatomic location makes gross total surgical resection impossible, and fewer than 10% of patients survive more than 2 years after diagnosis. Often, these lesions are treated based on imaging characteristics alone. However, despite aggressive chemotherapy and radiation treatments available, prognosis remains poor. There is therefore a need for new therapies directed by biologic profiling. This necessitates a tissue diagnosis and, therefore, surgical biopsy. We have reviewed the results of biopsy for DIPGs in children at a single institution and compared our results to those available in the literature to elucidate the utility of biopsy for DIPGs. METHODS:A historical cohort study was performed using medical records of patients under the age of 18 who underwent surgical biopsy of a DIPG at a single institution. RESULTS:Nine patients were included, four males and five females. Age at presentation ranged from 8 months to 10 years (average 5.7 years). Pathologic diagnoses included five high grade (WHO grade III or IV) gliomas and four low grade (WHO grade II) astrocytomas. There were no intraoperative complications, and only one patient developed a new postoperative neurologic deficit. CONCLUSIONS:Stereotactic biopsy of DIPGs is essential to obtain a pathologic diagnosis and is associated with low morbidity. This technique is important to elucidate biological characteristics of these tumors in order to direct multidisciplinary treatment plans possibly involving chemotherapy, radiation therapy, or other future clinical trial interventions for children with DIPGs.
PMID: 23666401
ISSN: 1433-0350
CID: 3318482

Characterization of a diffuse intrinsic pontine glioma cell line: implications for future investigations and treatment [Case Report]

Hashizume, Rintaro; Smirnov, Ivan; Liu, Sharon; Phillips, Joanna J; Hyer, Jeanette; McKnight, Tracy R; Wendland, Michael; Prados, Michael; Banerjee, Anu; Nicolaides, Theodore; Mueller, Sabine; James, Charles D; Gupta, Nalin
Diffuse intrinsic pontine gliomas arise almost exclusively in children, and despite advances in treatment, the majority of patients die within 2 years after initial diagnosis. Because of their infiltrative nature and anatomic location in an eloquent area of the brain, most pontine gliomas are treated without a surgical biopsy. The corresponding lack of tissue samples has resulted in a limited understanding of the underlying genetic and molecular biologic abnormalities associated with pontine gliomas, and is a substantial obstacle for the preclinical testing of targeted therapeutic agents for these tumors. We have established a human glioma cell line that originated from surgical biopsy performed on a patient with a pontine glioma. To insure sustainable in vitro propagation, tumor cells were modified with hTERT (human telomerase ribonucleoprotein reverse transcriptase), and with a luciferase reporter to enable non-invasive bioluminescence imaging. The hTERT modified cells are tumorigenic in athymic rodents, and produce brainstem tumors that recapitulate the infiltrative growth of brainstem gliomas in patients.
PMID: 22983601
ISSN: 1573-7373
CID: 3318472

Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency

See, Wendy L; Tan, I-Li; Mukherjee, Joydeep; Nicolaides, Theodore; Pieper, Russell O
Loss of neurofibromin 1 (NF1) leads to hyperactivation of RAS, which in turn signals through the RAF/MEK/ERK and phosphoinositide 3-kinase (PI3K)/mTOR pathways to regulate cell growth and survival. Because NF1-deficient acute myeloid leukemias are sensitive to MEK inhibitors, we investigated here whether NF1-deficient glioblastoma multiforme (GBM) would respond to MEK inhibition. In 19 GBM cell lines, we found that treatment with the clinically available MEK inhibitors PD0325901 or AZD6244 decreased levels of phospho-ERK, the downstream effector of MEK, regardless of NF1 status. However, growth inhibition occurred only in a subset of NF1-deficient cells, in association with decreased levels of cyclin D1, increased levels of p27, and G1 arrest. As a single agent, PD0325901 suppressed the growth of NF1-deficient, MEK inhibitor-sensitive cells in vivo as well. Mechanistically, NF1-deficient, MEK inhibitor-sensitive cells were dependent upon the RAF/MEK/ERK pathway for growth and did not activate the PI3K pathway as a mechanism of acquired resistance. Importantly, NF1-deficient cells intrinsically resistant to MEK inhibition were sensitized by the addition of the dual PI3K/mTOR inhibitor PI-103. Taken together, our findings indicate that a subset of NF1-deficient GBMs may respond to MEK inhibitors currently being tested in clinical trials.
PMID: 22573716
ISSN: 1538-7445
CID: 3318442

Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy

Huillard, Emmanuelle; Hashizume, Rintaro; Phillips, Joanna J; Griveau, Amélie; Ihrie, Rebecca A; Aoki, Yasuyuki; Nicolaides, Theodore; Perry, Arie; Waldman, Todd; McMahon, Martin; Weiss, William A; Petritsch, Claudia; James, C David; Rowitch, David H
Although malignant astrocytomas are a leading cause of cancer-related death in children, rational therapeutic strategies are lacking. We previously identified activating mutations of v-raf murine sarcoma viral oncogene homolog B1 (BRAF) (BRAF(T1799A) encoding BRAF(V600E)) in association with homozygous cyclin-dependent kinase inhibitor 2A (CDKN2A, encoding p14ARF and p16Ink4a) deletions in pediatric infiltrative astrocytomas. Here we report that BRAF(V600E) expression in neural progenitors (NPs) is insufficient for tumorigenesis and increases NP cellular differentiation as well as apoptosis. In contrast, astrocytomas are readily generated from NPs with additional Ink4a-Arf deletion. The BRAF(V600E) inhibitor PLX4720 significantly increased survival of mice after intracranial transplant of genetically relevant murine or human astrocytoma cells. Moreover, combination therapy using PLX4720 plus the Cyclin-dependent kinase (CDK) 4/6-specific inhibitor PD0332991 further extended survival relative to either monotherapy. Our findings indicate a rational therapeutic strategy for treating a subset of pediatric astrocytomas with BRAF(V600E) mutation and CDKN2A deficiency.
PMID: 22586120
ISSN: 1091-6490
CID: 3318452

Kinetics of inhibitor cycling underlie therapeutic disparities between EGFR-driven lung and brain cancers

Barkovich, Krister J; Hariono, Sujatmi; Garske, Adam L; Zhang, Jie; Blair, Jimmy A; Fan, Qi-Wen; Shokat, Kevan M; Nicolaides, Theodore; Weiss, William A
UNLABELLED:Although mutational activation of the epidermal growth factor receptor (EGFR) features prominently in glioma and non-small cell lung cancer (NSCLC), inhibitors of EGFR improve survival only in patients with NCSLC. To understand how mutations in EGFR influence response to therapy, we generated glioma cells expressing either glioma- or NSCLC-derived alleles and quantified kinase-site occupancy by clinical inhibitors with the use of a novel affinity probe and kinetic methodology. At equivalent doses, erlotinib achieved lower kinase-site occupancy in glioma-derived EGFRvIII compared with NSCLC-derived EGFR mutants. Kinase-site occupancy correlated directly with cell-cycle arrest. EGFRvIII released erlotinib rapidly compared with wild-type EGFR, whereas NSCLC-derived mutants released erlotinib slowly. SIGNIFICANCE/CONCLUSIONS:These data suggest that kinase-site occupancy is a biomarker for efficacy of EGFR inhibitors, that rapid binding and release of erlotinib in glioma-derived EGFRvIII opposes the blockade of downstream signaling, and that slower cycling of erlotinib within the active site of NSCLC-derived mutants underlies their improved clinical response.
PMID: 22588882
ISSN: 2159-8290
CID: 3318462

Targeted therapy for BRAFV600E malignant astrocytoma

Nicolaides, Theodore P; Li, Huifang; Solomon, David A; Hariono, Sujatmi; Hashizume, Rintaro; Barkovich, Krister; Baker, Suzanne J; Paugh, Barbara S; Jones, Chris; Forshew, Tim; Hindley, Guy F; Hodgson, J Graeme; Kim, Jung-Sik; Rowitch, David H; Weiss, William A; Waldman, Todd A; James, C David
PURPOSE: Malignant astrocytomas (MA) are aggressive central nervous system tumors with poor prognosis. Activating mutation of BRAF (BRAF(V600E)) has been reported in a subset of these tumors, especially in children. We have investigated the incidence of BRAF(V600E) in additional pediatric patient cohorts and examined the effects of BRAF blockade in preclinical models of BRAF(V600E) and wild-type BRAF MA. EXPERIMENTAL DESIGN: BRAF(V600E) mutation status was examined in two pediatric MA patient cohorts. For functional studies, BRAF(V600E) MA cell lines were used to investigate the effects of BRAF shRNA knockdown in vitro, and to investigate BRAF pharmacologic inhibition in vitro and in vivo. RESULTS: BRAF(V600E) mutations were identified in 11 and 10% of MAs from two distinct series of tumors (six of 58 cases total). BRAF was expressed in all MA cell lines examined, among which BRAF(V600E) was identified in four instances. Using the BRAF(V600E)-specific inhibitor PLX4720, pharmacologic blockade of BRAF revealed preferential antiproliferative activity against BRAF(V600E) mutant cells in vitro, in contrast to the use of shRNA-mediated knockdown of BRAF, which inhibited cell growth of glioma cell lines regardless of BRAF mutation status. Using orthotopic MA xenografts, we show that PLX4720 treatment decreases tumor growth and increases overall survival in mice-bearing BRAF(V600E) mutant xenografts, while being ineffective, and possibly tumor promoting, against xenografts with wild-type BRAF. CONCLUSIONS: Our results indicate a 10% incidence of activating BRAF(V600E) among pediatric MAs. With regard to implications for therapy, our results support evaluation of BRAF(V600E)-specific inhibitors for treating BRAF(V600E) MA patients.
PMCID:3638050
PMID: 22038996
ISSN: 1078-0432
CID: 2766302

Akt and autophagy cooperate to promote survival of drug-resistant glioma

Fan, Qi-Wen; Cheng, Christine; Hackett, Chris; Feldman, Morri; Houseman, Benjamin T; Nicolaides, Theodore; Haas-Kogan, Daphne; James, C David; Oakes, Scott A; Debnath, Jayanta; Shokat, Kevan M; Weiss, William A
Although the phosphatidylinositol 3-kinase to Akt to mammalian target of rapamycin (PI3K-Akt-mTOR) pathway promotes survival signaling, inhibitors of PI3K and mTOR induce minimal cell death in PTEN (phosphatase and tensin homolog deleted from chromosome 10) mutant glioma. Here, we show that the dual PI3K-mTOR inhibitor PI-103 induces autophagy in a form of glioma that is resistant to therapy. Inhibitors of autophagosome maturation cooperated with PI-103 to induce apoptosis through the mitochondrial pathway, indicating that the cellular self-digestion process of autophagy acted as a survival signal in this setting. Not all inhibitors of mTOR synergized with inhibitors of autophagy. Rapamycin delivered alone induced autophagy, yet cells survived inhibition of autophagosome maturation because of rapamycin-mediated activation of Akt. In contrast, adenosine 5'-triphosphate-competitive inhibitors of mTOR stimulated autophagy more potently than did rapamycin, with inhibition of mTOR complexes 1 and 2 contributing independently to induction of autophagy. We show that combined inhibition of PI3K and mTOR, which activates autophagy without activating Akt, cooperated with inhibition of autophagy to cause glioma cells to undergo apoptosis. Moreover, the PI3K-mTOR inhibitor NVP-BEZ235, which is in clinical use, synergized with the lysosomotropic inhibitor of autophagy, chloroquine, another agent in clinical use, to induce apoptosis in glioma xenografts in vivo, providing a therapeutic approach potentially translatable to humans.
PMID: 21062993
ISSN: 1937-9145
CID: 3318432

Intratumoral therapy of glioblastoma multiforme using genetically engineered transferrin for drug delivery

Yoon, Dennis J; Kwan, Byron H; Chao, Felix C; Nicolaides, Theodore P; Phillips, Joanna J; Lam, Gretchen Y; Mason, Anne B; Weiss, William A; Kamei, Daniel T
Glioblastoma multiforme (GBM) is the most common and lethal primary brain tumor with median survival of only 12 to 15 months under the current standard of care. To both increase tumor specificity and decrease nonspecific side effects, recent experimental strategies in the treatment of GBM have focused on targeting cell surface receptors, including the transferrin (Tf) receptor, that are overexpressed in many cancers. A major limitation of Tf-based therapeutics is the short association of Tf within the cell to deliver its payload. We previously developed two mutant Tf molecules, K206E/R632A Tf and K206E/K534A Tf, in which iron is locked into each of the two homologous lobes. Relative to wild-type Tf, we showed enhanced delivery of diphtheria toxin (DT) from these mutants to a monolayer culture of HeLa cells. Here, we extend the application of our Tf mutants to the treatment of GBM. In vitro treatment of Tf mutants to a monolayer culture of glioma cells showed enhanced cellular association as well as enhanced delivery of conjugated DT. Treatment of GBM xenografts with mutant Tf-conjugated DT resulted in pronounced regression in vivo, indicating their potential use as drug carriers.
PMCID:2893299
PMID: 20460527
ISSN: 1538-7445
CID: 2766312