Try a new search

Format these results:

Searched for:

in-biosketch:true

person:wangj28

Total Results:

85


Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex

Zhao, Ruohe; Zhou, Hang; Huang, Lianyan; Xie, Zhongcong; Wang, Jing; Gan, Wen-Biao; Yang, Guang
The anterior cingulate cortex (ACC) is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging technique to monitor the activity of individual neurons in the ACC of awake, head restrained mice. Calcium imaging in the dorsal ACC revealed robust somatic activity in layer 5 (L5) pyramidal neurons in response to peripheral noxious stimuli, and the degree of evoked activity was correlated with the intensity of noxious stimulation. Furthermore, the activation of ACC neurons occurred bilaterally upon noxious stimulation to either contralateral or ipsilateral hind paws. Notably, with nerve injury-induced neuropathic pain in one limb, L5 pyramidal neurons in both sides of the ACC showed enhanced activity in the absence or presence of pain stimuli. These results reveal hyperactivity of L5 pyramidal neurons in the bilateral ACC during the development of neuropathic pain.
PMCID:5919951
PMID: 29731710
ISSN: 1662-5102
CID: 3084682

Assessment of Aversion of Acute Pain Stimulus through Conditioned Place Aversion

Urien, Louise; Zhang, Qiaosheng; Martinez, Erik; Zhou, Haocheng; Desrosier, Nicole; Dale, Jahrane; Wang, Jing
Pain is a complex experience. The aversive component of pain has been assessed through conditioned place aversion in rodents. However, this behavioral test does not allow the evaluation of the aversion of an acute pain stimulus. In Zhang et al. (2017), we provide an updated version of a Conditioned Place Aversion paradigm to address this challenge. In this protocol, a detailed version of this method is described.
PMCID:5718366
PMID: 29226182
ISSN: 2331-8325
CID: 2837552

AMPAkines and morphine provide complementary analgesia

Sun, Yongjun; Liu, Kevin; Martinez, Erik; Dale, Jahrane; Huang, Dong; Wang, Jing
Glutamate signaling in the central nervous system is known to play a key role in pain regulation. AMPAkines can enhance glutamate signaling through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. previous studies have shown that AMPAkines are effective analgesic agents, and their site of action is likely in the brain. It is not known, however, if AMPAkines can provide complementary analgesia in combination with opioids, the most commonly used analgesics. Here, we show that the co-administration of an AMPAkine with morphine can provide additional analgesia, both in naive rats and in rats that experience postoperative pain. Furthermore, we show that this AMPAkine can be administered directly into the prefrontal cortex to provide analgesia, and that prefrontal AMPAkine infusion, similar to systemic administration, can provide added pain relief to complement morphine analgesia.
PMCID:5621600
PMID: 28734765
ISSN: 1872-7549
CID: 2652082

Deciphering neuronal population codes for acute thermal pain

Chen, Zhe; Zhang, Qiaosheng; Tong, Ai Phuong Sieu; Manders, Toby R; Wang, Jing
OBJECTIVE: Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. APPROACH: We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. MAIN RESULTS: The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the 'neuronal threshold' for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. SIGNIFICANCE: Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.
PMCID:5679238
PMID: 28384122
ISSN: 1741-2552
CID: 2521592

Chronic pain induces generalized enhancement of aversion

Zhang, Qiaosheng; Manders, Toby; Tong, Ai Phuong; Yang, Runtao; Garg, Arpan; Martinez, Erik; Zhou, Haocheng; Dale, Jahrane; Goyal, Abhinav; Urien, Louise; Yang, Guang; Chen, Zhe; Wang, Jing
A hallmark feature of chronic pain is its ability to impact other sensory and affective experiences. It is notably associated with hypersensitivity at the site of tissue injury. It is less clear, however, if chronic pain can also induce a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs. Here, we showed that chronic pain in one limb in rats increased the aversive response to acute pain stimuli in the opposite limb, as assessed by conditioned place aversion. Interestingly, neural activities in the anterior cingulate cortex (ACC) correlated with noxious intensities, and optogenetic modulation of ACC neurons showed bidirectional control of the aversive response to acute pain. Chronic pain, however, altered acute pain intensity representation in the ACC to increase the aversive response to noxious stimuli at anatomically unrelated sites. Thus, chronic pain can disrupt cortical circuitry to enhance the aversive experience in a generalized anatomically nonspecific manner.
PMCID:5438248
PMID: 28524819
ISSN: 2050-084x
CID: 2563092

Quickest detection for abrupt changes in neuronal ensemble spiking activity using model-based and model-free approaches

Chapter by: Chen, Zhe; Hu, Sile; Zhang, Qiaosheng; Wang, Jing
in: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER) by
pp. 481-484
ISBN: 978-1-5090-4603-4
CID: 2734702

Corticostriatal Regulation of Acute Pain

Martinez, Erik; Lin, Harvey H; Zhou, Haocheng; Dale, Jahrane; Liu, Kevin; Wang, Jing
The mechanisms for acute pain regulation in the brain are not well understood. The prefrontal cortex (PFC) provides top-down control of emotional processes, and it projects to the nucleus accumbens (NAc). This corticostriatal projection forms an important regulatory pathway within the brain's reward system. Recently, this projection has been suggested to control both sensory and affective phenotypes specifically associated with chronic pain. As this projection is also known to play a role in the transition from acute to chronic pain, we hypothesized that this corticostriatal circuit can also exert a modulatory function in the acute pain state. Here, we used optogenetics to specifically target the projection from the PFC to the NAc. We tested sensory pain behaviors with Hargreaves' test and mechanical allodynia, and aversive pain behaviors with conditioned place preference (CPP) test. We found that the activation of this corticostriatal circuit gave rise to bilateral relief from peripheral nociceptive inputs. Activation of this circuit also provided important control for the aversive response to transient noxious stimulations. Hence, our results support a novel role for corticostriatal circuitry in acute pain regulation.
PMCID:5445115
PMID: 28603489
ISSN: 1662-5102
CID: 3658032

AMPAkines Target the Nucleus Accumbens to Relieve Postoperative Pain

Su, Chen; Lin, Hau Yeuh; Yang, Runtao; Xu, Duo; Lee, Michelle; Pawlak, Natalie; Norcini, Monica; Sideris, Alexandra; Recio-Pinto, Esperanza; Huang, Dong; Wang, Jing
BACKGROUND: AMPAkines augment the function of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the brain to increase excitatory outputs. These drugs are known to relieve persistent pain. However, their role in acute pain is unknown. Furthermore, a specific molecular and anatomic target for these novel analgesics remains elusive. METHODS: The authors studied the analgesic role of an AMPAkine, CX546, in a rat paw incision (PI) model of acute postoperative pain. The authors measured the effect of AMPAkines on sensory and depressive symptoms of pain using mechanical hypersensitivity and forced swim tests. The authors asked whether AMPA receptors in the nucleus accumbens (NAc), a key node in the brain's reward and pain circuitry, can be a target for AMPAkine analgesia. RESULTS: Systemic administration of CX546 (n = 13), compared with control (n = 13), reduced mechanical hypersensitivity (50% withdrawal threshold of 6.05 +/- 1.30 g [mean +/- SEM] vs. 0.62 +/- 0.13 g), and it reduced depressive features of pain by decreasing immobility on the forced swim test in PI-treated rats (89.0 +/- 15.5 vs. 156.7 +/- 18.5 s). Meanwhile, CX546 delivered locally into the NAc provided pain-relieving effects in both PI (50% withdrawal threshold of 6.81 +/- 1.91 vs. 0.50 +/- 0.03 g; control, n = 6; CX546, n = 8) and persistent postoperative pain (spared nerve injury) models (50% withdrawal threshold of 3.85 +/- 1.23 vs. 0.45 +/- 0.00 g; control, n = 7; CX546, n = 11). Blocking AMPA receptors in the NAc with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione inhibited these pain-relieving effects (50% withdrawal threshold of 7.18 +/- 1.52 vs. 1.59 +/- 0.66 g; n = 8 for PI groups; 10.70 +/- 3.45 vs. 1.39 +/- 0.88 g; n = 4 for spared nerve injury groups). CONCLUSIONS: AMPAkines relieve postoperative pain by acting through AMPA receptors in the NAc.
PMCID:5226421
PMID: 27627816
ISSN: 1528-1175
CID: 2247002

Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer

Zhang, Hui; Liu, Tao; Zhang, Zhen; Payne, Samuel H; Zhang, Bai; McDermott, Jason E; Zhou, Jian-Ying; Petyuk, Vladislav A; Chen, Li; Ray, Debjit; Sun, Shisheng; Yang, Feng; Chen, Lijun; Wang, Jing; Shah, Punit; Cha, Seong Won; Aiyetan, Paul; Woo, Sunghee; Tian, Yuan; Gritsenko, Marina A; Clauss, Therese R; Choi, Caitlin; Monroe, Matthew E; Thomas, Stefani; Nie, Song; Wu, Chaochao; Moore, Ronald J; Yu, Kun-Hsing; Tabb, David L; Fenyo, David; Bafna, Vineet; Wang, Yue; Rodriguez, Henry; Boja, Emily S; Hiltke, Tara; Rivers, Robert C; Sokoll, Lori; Zhu, Heng; Shih, Ie-Ming; Cope, Leslie; Pandey, Akhilesh; Zhang, Bing; Snyder, Michael P; Levine, Douglas A; Smith, Richard D; Chan, Daniel W; Rodland, Karin D
To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC.
PMCID:4967013
PMID: 27372738
ISSN: 1097-4172
CID: 2179552

Persistent neuropathic pain increases synaptic GluA1 subunit levels in core and shell subregions of the nucleus accumbens

Xu, Duo; Su, Chen; Lin, Hau-Yueh; Manders, Toby; Wang, Jing
The nucleus accumbens (NAc) is a key component of the brain reward system, and it is composed of core and shell subregions. Glutamate transmission through AMPA-type receptors in both core and shell of the NAc has been shown to regulate reward- and aversion-type behaviors. Previous studies have additionally demonstrated a role for AMPA receptor signaling in the NAc in chronic pain states. Here, we show that persistent neuropathic pain, modeled by spared nerve injury (SNI), selectively increases the numbers of GluA1 subunits of AMPA receptors at the synapse of both core and shell subregions. Such increases are not observed, however, for the GluA2 subunits. Furthermore, we find that phosphorylation at Ser845-GluA1 is increased by SNI at both core and shell subregions. These results demonstrate that persistent neuropathic pain increases AMPA receptor delivery to the synapse in both NAc core and shell, implying a role for AMPA receptor signaling in these regions in pain states.
PMCID:4679417
PMID: 26477778
ISSN: 1872-7972
CID: 1810362