Try a new search

Format these results:

Searched for:

in-biosketch:true

person:wangj28

Total Results:

90


Local field potential decoding of the onset and intensity of acute pain in rats

Zhang, Qiaosheng; Xiao, Zhengdong; Huang, Conan; Hu, Sile; Kulkarni, Prathamesh; Martinez, Erik; Tong, Ai Phuong; Garg, Arpan; Zhou, Haocheng; Chen, Zhe; Wang, Jing
Pain is a complex sensory and affective experience. The current definition for pain relies on verbal reports in clinical settings and behavioral assays in animal models. These definitions can be subjective and do not take into consideration signals in the neural system. Local field potentials (LFPs) represent summed electrical currents from multiple neurons in a defined brain area. Although single neuronal spike activity has been shown to modulate the acute pain, it is not yet clear how ensemble activities in the form of LFPs can be used to decode the precise timing and intensity of pain. The anterior cingulate cortex (ACC) is known to play a role in the affective-aversive component of pain in human and animal studies. Few studies, however, have examined how neural activities in the ACC can be used to interpret or predict acute noxious inputs. Here, we recorded in vivo extracellular activity in the ACC from freely behaving rats after stimulus with non-noxious, low-intensity noxious, and high-intensity noxious stimuli, both in the absence and chronic pain. Using a supervised machine learning classifier with selected LFP features, we predicted the intensity and the onset of acute nociceptive signals with high degree of precision. These results suggest the potential to use LFPs to decode acute pain.
PMCID:5974270
PMID: 29844576
ISSN: 2045-2322
CID: 3136272

Scaling Up Cortical Control Inhibits Pain

Dale, Jahrane; Zhou, Haocheng; Zhang, Qiaosheng; Martinez, Erik; Hu, Sile; Liu, Kevin; Urien, Louise; Chen, Zhe; Wang, Jing
Acute pain evokes protective neural and behavioral responses. Chronic pain, however, disrupts normal nociceptive processing. The prefrontal cortex (PFC) is known to exert top-down regulation of sensory inputs; unfortunately, how individual PFC neurons respond to an acute pain signal is not well characterized. We found that neurons in the prelimbic region of the PFC increased firing rates of the neurons after noxious stimulations in free-moving rats. Chronic pain, however, suppressed both basal spontaneous and pain-evoked firing rates. Furthermore, we identified a linear correlation between basal and evoked firing rates of PFC neurons, whereby a decrease in basal firing leads to a nearly 2-fold reduction in pain-evoked response in chronic pain states. In contrast, enhancing basal PFC activity with low-frequency optogenetic stimulation scaled up prefrontal outputs to inhibit pain. These results demonstrate a cortical gain control system for nociceptive regulation and establish scaling up prefrontal outputs as an effective neuromodulation strategy to inhibit pain.
PMCID:5965697
PMID: 29719246
ISSN: 2211-1247
CID: 3061672

Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity

Hu, Sile; Zhang, Qiaosheng; Wang, Jing; Chen, Zhe
Sequential change-point detection from time series data is a common problem in many neuroscience applications, such as seizure detection, anomaly detection, and pain detection. In our previous work (Chen et al., 2017, J. Neural Eng.), we have developed a latent state space model, known as Poisson linear dynamical system (PLDS), for detecting abrupt changes in neuronal ensemble spike activity. In online brain-machine interface (BMI) applications, a recursive filtering algorithm is used to track the changes in the latent variable. However, previous methods have restricted to Gaussian dynamical noise and have used Gaussian approximation for the Poisson likelihood. To improve the detection speed, we introduce non-Gaussian dynamical noise for modeling a stochastic jump process in the latent state space. To efficiently estimate the state posterior that accommodates non-Gaussian noise and non-Gaussian likelihood, we propose particle filtering and smoothing algorithms for the change-point detection problem. To speed up the computation, we implement the proposed particle filtering algorithms using advanced GPU (graphic processing unit) computing technology. We validate our algorithms using both computer simulations and experimental data for acute pain detection. Finally, we discuss several important practical issues in the context of real-time closed-loop BMI applications.
PMCID:5966736
PMID: 29357468
ISSN: 1522-1598
CID: 2929372

Variants with a low allele frequency detected in genomic DNA affect the accuracy of mutation detection in cell-free DNA by next-generation sequencing

Wang, Jacqueline F; Pu, Xingxiang; Zhang, Xiaoshan; Chen, Ken; Xi, Yuanxin; Wang, Jing; Mao, Xizeng; Zhang, Jianhua; Heymach, John V; Antonoff, Mara B; Hofstetter, Wayne L; Mehran, Reza J; Rice, David C; Roth, Jack A; Sepesi, Boris; Swisher, Stephen G; Vaporciyan, Ara A; Walsh, Garrett L; Meng, Qing H; Shaw, Kenna R; Eterovic, Agda Karina; Fang, Bingliang
BACKGROUND:Next-generation sequencing of cell-free DNA (cfDNA) has been shown to be a useful noninvasive test for detecting mutations in solid tumors. METHODS:Targeted gene sequencing was performed with a panel of 263 cancer-related genes for cfDNA and genomic DNA of peripheral blood mononuclear cells (PBMCs) obtained from presurgical specimens of 6 lung cancer patients, and mutation calls in these samples were compared with those of primary tumors and corresponding patient-derived xenografts (PDXs). RESULTS:Approximately 67% of the mutations detected in the tumor samples (primary tumors and/or PDXs) were also detected in genomic DNA from PBMCs as background mutations. These background mutations consisted of germline polymorphisms and a group of mutations with low allele frequencies, mostly <10%. These variants with a low allele frequency were repeatedly detected in all types of samples from the same patients and at similarly low allele frequency levels in PBMCs from different patients; this indicated that their detection might be derived from common causes, such as homologous sequences in the human genome. Allele frequencies of mutations detected in both primary tumors and cfDNA showed 2 patterns: 1) low allele frequencies (approximately 1%-10%) in cfDNA but high allele frequencies (usually >10% or >3-fold increase) in primary tumors and further enrichment in PDXs and 2) similar allele frequencies across samples. CONCLUSIONS:Because only a small fraction of total cfDNA might be derived from tumor cells, only mutations with the first allele frequency pattern may be regarded as tumor-specific mutations in cfDNA. Effective filtering of background mutations will be required to improve the accuracy of mutation calls in cfDNA. Cancer 2018;124:1061-9. © 2017 American Cancer Society.
PMCID:5821585
PMID: 29178133
ISSN: 1097-0142
CID: 5810452

Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex

Zhao, Ruohe; Zhou, Hang; Huang, Lianyan; Xie, Zhongcong; Wang, Jing; Gan, Wen-Biao; Yang, Guang
The anterior cingulate cortex (ACC) is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging technique to monitor the activity of individual neurons in the ACC of awake, head restrained mice. Calcium imaging in the dorsal ACC revealed robust somatic activity in layer 5 (L5) pyramidal neurons in response to peripheral noxious stimuli, and the degree of evoked activity was correlated with the intensity of noxious stimulation. Furthermore, the activation of ACC neurons occurred bilaterally upon noxious stimulation to either contralateral or ipsilateral hind paws. Notably, with nerve injury-induced neuropathic pain in one limb, L5 pyramidal neurons in both sides of the ACC showed enhanced activity in the absence or presence of pain stimuli. These results reveal hyperactivity of L5 pyramidal neurons in the bilateral ACC during the development of neuropathic pain.
PMCID:5919951
PMID: 29731710
ISSN: 1662-5102
CID: 3084682

Inhibition of the Prefrontal Projection to the Nucleus Accumbens Enhances Pain Sensitivity and Affect

Zhou, Haocheng; Martinez, Erik; Lin, Harvey H; Yang, Runtao; Dale, Jahrane Antonio; Liu, Kevin; Huang, Dong; Wang, Jing
Cortical mechanisms that regulate acute or chronic pain remain poorly understood. The prefrontal cortex (PFC) exerts crucial control of sensory and affective behaviors. Recent studies show that activation of the projections from the PFC to the nucleus accumbens (NAc), an important pathway in the brain's reward circuitry, can produce inhibition of both sensory and affective components of pain. However, it is unclear whether this circuit is endogenously engaged in pain regulation. To answer this question, we disrupted this circuit using an optogenetic strategy. We expressed halorhodopsin in pyramidal neurons from the PFC, and then selectively inhibited the axonal projection from these neurons to neurons in the NAc core. Our results reveal that inhibition of the PFC or its projection to the NAc, heightens both sensory and affective symptoms of acute pain in naïve rats. Inhibition of this corticostriatal pathway also increased nociceptive sensitivity and the aversive response in a chronic neuropathic pain model. Finally, corticostriatal inhibition resulted in a similar aversive phenotype as chronic pain. These results strongly suggest that the projection from the PFC to the NAc plays an important role in endogenous pain regulation, and its impairment contributes to the pathology of chronic pain.
PMCID:6099095
PMID: 30150924
ISSN: 1662-5102
CID: 3247032

Assessment of Aversion of Acute Pain Stimulus through Conditioned Place Aversion

Urien, Louise; Zhang, Qiaosheng; Martinez, Erik; Zhou, Haocheng; Desrosier, Nicole; Dale, Jahrane; Wang, Jing
Pain is a complex experience. The aversive component of pain has been assessed through conditioned place aversion in rodents. However, this behavioral test does not allow the evaluation of the aversion of an acute pain stimulus. In Zhang et al. (2017), we provide an updated version of a Conditioned Place Aversion paradigm to address this challenge. In this protocol, a detailed version of this method is described.
PMCID:5718366
PMID: 29226182
ISSN: 2331-8325
CID: 2837552

AMPAkines and morphine provide complementary analgesia

Sun, Yongjun; Liu, Kevin; Martinez, Erik; Dale, Jahrane; Huang, Dong; Wang, Jing
Glutamate signaling in the central nervous system is known to play a key role in pain regulation. AMPAkines can enhance glutamate signaling through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. previous studies have shown that AMPAkines are effective analgesic agents, and their site of action is likely in the brain. It is not known, however, if AMPAkines can provide complementary analgesia in combination with opioids, the most commonly used analgesics. Here, we show that the co-administration of an AMPAkine with morphine can provide additional analgesia, both in naive rats and in rats that experience postoperative pain. Furthermore, we show that this AMPAkine can be administered directly into the prefrontal cortex to provide analgesia, and that prefrontal AMPAkine infusion, similar to systemic administration, can provide added pain relief to complement morphine analgesia.
PMCID:5621600
PMID: 28734765
ISSN: 1872-7549
CID: 2652082

Deciphering neuronal population codes for acute thermal pain

Chen, Zhe; Zhang, Qiaosheng; Tong, Ai Phuong Sieu; Manders, Toby R; Wang, Jing
OBJECTIVE: Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. APPROACH: We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. MAIN RESULTS: The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the 'neuronal threshold' for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. SIGNIFICANCE: Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.
PMCID:5679238
PMID: 28384122
ISSN: 1741-2552
CID: 2521592

Chronic pain induces generalized enhancement of aversion

Zhang, Qiaosheng; Manders, Toby; Tong, Ai Phuong; Yang, Runtao; Garg, Arpan; Martinez, Erik; Zhou, Haocheng; Dale, Jahrane; Goyal, Abhinav; Urien, Louise; Yang, Guang; Chen, Zhe; Wang, Jing
A hallmark feature of chronic pain is its ability to impact other sensory and affective experiences. It is notably associated with hypersensitivity at the site of tissue injury. It is less clear, however, if chronic pain can also induce a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs. Here, we showed that chronic pain in one limb in rats increased the aversive response to acute pain stimuli in the opposite limb, as assessed by conditioned place aversion. Interestingly, neural activities in the anterior cingulate cortex (ACC) correlated with noxious intensities, and optogenetic modulation of ACC neurons showed bidirectional control of the aversive response to acute pain. Chronic pain, however, altered acute pain intensity representation in the ACC to increase the aversive response to noxious stimuli at anatomically unrelated sites. Thus, chronic pain can disrupt cortical circuitry to enhance the aversive experience in a generalized anatomically nonspecific manner.
PMCID:5438248
PMID: 28524819
ISSN: 2050-084x
CID: 2563092