Searched for: in-biosketch:true
person:balcel01
Cerebrospinal fluid from COVID-19 patients with olfactory/gustatory dysfunction: A review
Lewis, Ariane; Frontera, Jennifer; Placantonakis, Dimitris G; Galetta, Steven; Balcer, Laura; Melmed, Kara R
OBJECTIVE:We reviewed the literature on cerebrospinal fluid (CSF) testing in patients with altered olfactory/gustatory function due to COVID-19 for evidence of viral neuroinvasion. METHODS:We performed a systematic review of Medline and Embase to identify publications that described at least one patient with COVID-19 who had altered olfactory/gustatory function and had CSF testing performed. The search ranged from December 1, 2019 to November 18, 2020. RESULTS:We identified 51 publications that described 70 patients who met inclusion criteria. Of 51 patients who had CSF SARS-CoV-2 PCR testing, 3 (6%) patients had positive results and 1 (2%) patient had indeterminate results. Cycle threshold (Ct; the number of amplification cycles required for the target gene to exceed the threshold, which is inversely related to viral load) was not provided for the patients with a positive PCR. The patient with indeterminate results had a Ct of 37 initially, then no evidence of SARS-CoV-2 RNA on repeat testing. Of 6 patients who had CSF SARS-CoV-2 antibody testing, 3 (50%) were positive. Testing to distinguish intrathecal antibody synthesis from transudation of antibodies to the CSF via breakdown of the blood-brain barrier was performed in 1/3 (33%) patients; this demonstrated antibody transmission to the CSF via transudation. CONCLUSION/CONCLUSIONS:Detection of SARS-CoV-2 in CSF via PCR or evaluation for intrathecal antibody synthesis appears to be rare in patients with altered olfactory/gustatory function. While pathology studies are needed, our review suggests it is unlikely that these symptoms are related to viral neuroinvasion.
PMCID:8196517
PMID: 34146842
ISSN: 1872-6968
CID: 4936832
Cerebrospinal fluid findings in patients with seizure in the setting of COVID-19: A review of the literature
Carroll, Elizabeth; Melmed, Kara R; Frontera, Jennifer; Placantonakis, Dimitris G; Galetta, Steven; Balcer, Laura; Lewis, Ariane
We reviewed the literature on cerebrospinal fluid (CSF) studies in patients who had a seizure in the setting of COVID-19 infection to evaluate for evidence of viral neuroinvasion. We performed a systematic review of Medline and Embase to identify publications that reported one or more patients with COVID-19 who had a seizure and had CSF testing preformed. The search ranged from December 1st 2019 to November 18th 2020. We identified 56 publications which described 69 unique patients who met our inclusion criteria. Of the 54 patients whose past medical history was provided, 2 (4%) had epilepsy and 1 (2%) had a prior seizure in the setting of hyperglycemia, but the remaining 51 (94%) had no history of seizures. Seizure was the initial symptom of COVID-19 for 15 (22%) patients. There were 26 (40%) patients who developed status epilepticus. SARS-CoV-2 PCR testing was performed in the CSF for 45 patients; 6 (13%) had a positive CSF SARS-CoV-2 PCR, only 1 (17%) of whom had status epilepticus. The cycle thresholds were not reported. Evaluation for CSF SARS-CoV-2 antibodies (directly or indirectly, via testing for CSF oligoclonal bands or immunoglobulins) was performed in 26 patients, only 2 (8%) of whom had evidence of intrathecal antibody synthesis. Of the 11 patients who had CSF autoimmune antibody panels tested, 1 had NMDA antibodies and 1 had Caspr-2 antibodies. Detection of SARS-CoV-2 in the CSF of patients with seizures who have COVID-19 is uncommon. Our review suggests that seizures in this patient population are not likely due to direct viral invasion of the brain.
PMCID:8127527
PMID: 34044299
ISSN: 1532-2688
CID: 4903862
A prospective study of long-term outcomes among hospitalized COVID-19 patients with and without neurological complications
Frontera, Jennifer A; Yang, Dixon; Lewis, Ariane; Patel, Palak; Medicherla, Chaitanya; Arena, Vito; Fang, Taolin; Andino, Andres; Snyder, Thomas; Madhavan, Maya; Gratch, Daniel; Fuchs, Benjamin; Dessy, Alexa; Canizares, Melanie; Jauregui, Ruben; Thomas, Betsy; Bauman, Kristie; Olivera, Anlys; Bhagat, Dhristie; Sonson, Michael; Park, George; Stainman, Rebecca; Sunwoo, Brian; Talmasov, Daniel; Tamimi, Michael; Zhu, Yingrong; Rosenthal, Jonathan; Dygert, Levi; Ristic, Milan; Ishii, Haruki; Valdes, Eduard; Omari, Mirza; Gurin, Lindsey; Huang, Joshua; Czeisler, Barry M; Kahn, D Ethan; Zhou, Ting; Lin, Jessica; Lord, Aaron S; Melmed, Kara; Meropol, Sharon; Troxel, Andrea B; Petkova, Eva; Wisniewski, Thomas; Balcer, Laura; Morrison, Chris; Yaghi, Shadi; Galetta, Steven
BACKGROUND:Little is known regarding long-term outcomes of patients hospitalized with COVID-19. METHODS:We conducted a prospective study of 6-month outcomes of hospitalized COVID-19 patients. Patients with new neurological complications during hospitalization who survived were propensity score-matched to COVID-19 survivors without neurological complications hospitalized during the same period. The primary 6-month outcome was multivariable ordinal analysis of the modified Rankin Scale(mRS) comparing patients with or without neurological complications. Secondary outcomes included: activities of daily living (ADLs;Barthel Index), telephone Montreal Cognitive Assessment and Neuro-QoL batteries for anxiety, depression, fatigue and sleep. RESULTS:Of 606 COVID-19 patients with neurological complications, 395 survived hospitalization and were matched to 395 controls; N = 196 neurological patients and N = 186 controls completed follow-up. Overall, 346/382 (91%) patients had at least one abnormal outcome: 56% had limited ADLs, 50% impaired cognition, 47% could not return to work and 62% scored worse than average on ≥1 Neuro-QoL scale (worse anxiety 46%, sleep 38%, fatigue 36%, and depression 25%). In multivariable analysis, patients with neurological complications had worse 6-month mRS (median 4 vs. 3 among controls, adjusted OR 1.98, 95%CI 1.23-3.48, P = 0.02), worse ADLs (aOR 0.38, 95%CI 0.29-0.74, P = 0.01) and were less likely to return to work than controls (41% versus 64%, P = 0.04). Cognitive and Neuro-QOL metrics were similar between groups. CONCLUSIONS:Abnormalities in functional outcomes, ADLs, anxiety, depression and sleep occurred in over 90% of patients 6-months after hospitalization for COVID-19. In multivariable analysis, patients with neurological complications during index hospitalization had significantly worse 6-month functional outcomes than those without.
PMCID:8113108
PMID: 34000678
ISSN: 1878-5883
CID: 4876752
National Institute of Neurological Disorders and Stroke Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome
Katz, Douglas I; Bernick, Charles; Dodick, David W; Mez, Jesse; Mariani, Megan L; Adler, Charles H; Alosco, Michael L; Balcer, Laura J; Banks, Sarah J; Barr, William B; Brody, David L; Cantu, Robert C; Dams-O'Connor, Kristen; Geda, Yonas E; Jordan, Barry D; McAllister, Thomas W; Peskind, Elaine R; Petersen, Ronald C; Wethe, Jennifer V; Zafonte, Ross D; Foley, Éimear M; Babcock, Debra J; Koroshetz, Walter J; Tripodis, Yorghos; McKee, Ann C; Shenton, Martha E; Cummings, Jeffrey L; Reiman, Eric M; Stern, Robert A
OBJECTIVE:To develop evidence-informed, expert consensus research diagnostic criteria for traumatic encephalopathy syndrome (TES), the clinical disorder associated with neuropathologically diagnosed chronic traumatic encephalopathy (CTE). METHODS:April, 2019. Before consensus, panelists reviewed evidence from all published cases of CTE with neuropathologic confirmation, and they examined the predictive validity data on clinical features in relation to CTE pathology from a large clinicopathologic study (n = 298). RESULTS:Consensus was achieved in 4 rounds of the Delphi procedure. Diagnosis of TES requires (1) substantial exposure to repetitive head impacts (RHIs) from contact sports, military service, or other causes; (2) core clinical features of cognitive impairment (in episodic memory and/or executive functioning) and/or neurobehavioral dysregulation; (3) a progressive course; and (4) that the clinical features are not fully accounted for by any other neurologic, psychiatric, or medical conditions. For those meeting criteria for TES, functional dependence is graded on 5 levels, ranging from independent to severe dementia. A provisional level of certainty for CTE pathology is determined based on specific RHI exposure thresholds, core clinical features, functional status, and additional supportive features, including delayed onset, motor signs, and psychiatric features. CONCLUSIONS:New consensus diagnostic criteria for TES were developed with a primary goal of facilitating future CTE research. These criteria will be revised as updated clinical and pathologic information and in vivo biomarkers become available.
PMID: 33722990
ISSN: 1526-632x
CID: 5232512
Author Response: A Prospective Study of Neurologic Disorders in Hospitalized Patients With COVID-19 in New York City [Comment]
Frontera, Jennifer A; Balcer, Laura; Galetta, Steven
PMID: 33723025
ISSN: 1526-632x
CID: 4819672
Author Response: A Prospective Study of Neurologic Disorders in Hospitalized Patients With COVID-19 in New York City [Comment]
Frontera, Jennifer A; Lewis, Ariane; Balcer, Laura; Galetta, Steven
PMID: 33723027
ISSN: 1526-632x
CID: 4819682
Practical Approach to the Tele-Neuro-Ophthalmology and Neuro-Otology Visits: Instructional Videos
Calix, Rachel; Grossman, Scott N; Rasool, Nailyn; Small, Leslie; Cho, Catherine; Galetta, Steven L; Balcer, Laura J; Rucker, Janet C
ABSTRACT/UNASSIGNED:A collection of instructional videos that illustrate a step by step approach to tele-neuro-ophthalmology and neuro-otology visits. These videos provide instruction for patient preparation for their video visit, patient and provider interface with an electronic medical record associated video platform, digital applications to assist with vision testing, and practical advice for detailed remote neuro-ophthalmologic and neuro-otologic examinations.
PMID: 33587534
ISSN: 1536-5166
CID: 4786512
Sleep-deprived residents and rapid picture naming performance using the Mobile Universal Lexicon Evaluation System (MULES) test
Conway, Jenna; Moretti, Luke; Nolan-Kenney, Rachel; Akhand, Omar; Serrano, Liliana; Kurzweil, Arielle; Rucker, Janet C; Galetta, Steven L; Balcer, Laura J
Objective/UNASSIGNED:The Mobile Universal Lexicon Evaluation System (MULES) is a rapid picture naming task that captures extensive brain networks involving neurocognitive, afferent/efferent visual, and language pathways. Many of the factors captured by MULES may be abnormal in sleep-deprived residents. This study investigates the effect of sleep deprivation in post-call residents on MULES performance. Methods/UNASSIGNED: = 18) and a group of similar-aged controls not taking call (n = 18). Differences in times between baseline and follow-up MULES scores were compared between the two groups. Results/UNASSIGNED: < 0.001, Wilcoxon rank sum test). The change in MULES time from baseline was significantly correlated to the change in subjective level of sleepiness for call residents and to the amount of sleep obtained in the 24 h prior to follow-up testing for the entire cohort. For call residents, the duration of sleep obtained during call did not significantly correlate with change in MULES scores. There was no significant correlation between MULES change and sleep quality questionnaire score for the entire cohort. Conclusion/UNASSIGNED:The MULES is a novel test for effects of sleep deprivation on neurocognition and vision pathways. Sleep deprivation significantly worsens MULES performance. Subjective sleepiness may also affect MULES performance. MULES may serve as a useful performance assessment tool for sleep deprivation in residents.
PMCID:7876539
PMID: 33604461
ISSN: 2405-6502
CID: 4787222
Cerebrospinal fluid in COVID-19: A systematic review of the literature
Lewis, Ariane; Frontera, Jennifer; Placantonakis, Dimitris G; Lighter, Jennifer; Galetta, Steven; Balcer, Laura; Melmed, Kara R
OBJECTIVE:We sought to review the literature on cerebrospinal fluid (CSF) testing in patients with COVID-19 for evidence of viral neuroinvasion by SARS-CoV-2. METHODS:We performed a systematic review of Medline and Embase between December 1, 2019 and November 18, 2020 to identify case reports or series of patients who had COVID-19 diagnosed based on positive SARS-CoV-2 polymerase chain reaction (PCR) or serologic testing and had CSF testing due to a neurologic symptom. RESULTS:We identified 242 relevant documents which included 430 patients with COVID-19 who had acute neurological symptoms prompting CSF testing. Of those, 321 (75%) patients had symptoms that localized to the central nervous system (CNS). Of 304 patients whose CSF was tested for SARS-CoV-2 PCR, there were 17 (6%) whose test was positive, all of whom had symptoms that localized to the central nervous system (CNS). The majority (13/17, 76%) of these patients were admitted to the hospital because of neurological symptoms. Of 58 patients whose CSF was tested for SARS-CoV-2 antibody, 7 (12%) had positive antibodies with evidence of intrathecal synthesis, all of whom had symptoms that localized to the CNS. Of 132 patients who had oligoclonal bands evaluated, 3 (2%) had evidence of intrathecal antibody synthesis. Of 77 patients tested for autoimmune antibodies in the CSF, 4 (5%) had positive findings. CONCLUSION:Detection of SARS-CoV-2 in CSF via PCR or evaluation for intrathecal antibody synthesis appears to be rare. Most neurological complications associated with SARS- CoV-2 are unlikely to be related to direct viral neuroinvasion.
PMCID:7833669
PMID: 33561753
ISSN: 1878-5883
CID: 4799772
How sandbag-able are concussion sideline assessments? A close look at eye movements to uncover strategies
Rizzo, John-Ross; Hudson, Todd E; Martone, John; Dai, Weiwei; Ihionu, Oluchi; Chaudhry, Yash; Selesnick, Ivan; Balcer, Laura J; Galetta, Steven L; Rucker, Janet C
Background: Sideline diagnostic tests for concussion are vulnerable to volitional poor performance ("sandbagging") on baseline assessments, motivated by desire to subvert concussion detection and potential removal from play. We investigated eye movements during sandbagging versus best effort on the King-Devick (KD) test, a rapid automatized naming (RAN) task. Methods: Participants performed KD testing during oculography following instructions to sandbag or give best effort. Results: Twenty healthy participants without concussion history were included (mean age 27 ± 8 years). Sandbagging resulted in longer test times (89.6 ± 39.2 s vs 48.2 ± 8.5 s, p < .001), longer inter-saccadic intervals (459.5 ± 125.4 ms vs 311.2 ± 79.1 ms, p < .001) and greater numbers of saccades (171.4 ± 47 vs 138 ± 24.2, p < .001) and reverse saccades (wrong direction for reading) (21.2% vs 11.3%, p < .001). Sandbagging was detectable using a logistic model with KD times as the only predictor, though more robustly detectable using eye movement metrics. Conclusions: KD sandbagging results in eye movement differences that are detectable by eye movement recordings and suggest an invalid test score. Objective eye movement recording during the KD test shows promise for distinguishing between best effort and post-injury performance, as well as for identifying sandbagging red flags.
PMID: 33529094
ISSN: 1362-301x
CID: 4776222