Try a new search

Format these results:

Searched for:

in-biosketch:true

person:bernss03

Total Results:

72


Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia

Wolf, Cordula M; Moskowitz, Ivan P G; Arno, Scott; Branco, Dorothy M; Semsarian, Christopher; Bernstein, Scott A; Peterson, Michael; Maida, Michael; Morley, Gregory E; Fishman, Glenn; Berul, Charles I; Seidman, Christine E; Seidman, J G
Sarcomere protein gene mutations cause hypertrophic cardiomyopathy (HCM), a disease with distinctive histopathology and increased susceptibility to cardiac arrhythmias and risk for sudden death. Myocyte disarray (disorganized cell-cell contact) and cardiac fibrosis, the prototypic but protean features of HCM histopathology, are presumed triggers for ventricular arrhythmias that precipitate sudden death events. To assess relationships between arrhythmias and HCM pathology without confounding human variables, such as genetic heterogeneity of disease-causing mutations, background genotypes, and lifestyles, we studied cardiac electrophysiology, hypertrophy, and histopathology in mice engineered to carry an HCM mutation. Both genetically outbred and inbred HCM mice had variable susceptibility to arrhythmias, differences in ventricular hypertrophy, and variable amounts and distribution of histopathology. Among inbred HCM mice, neither the extent nor location of myocyte disarray or cardiac fibrosis correlated with ex vivo signal conduction properties or in vivo electrophysiologically stimulated arrhythmias. In contrast, the amount of ventricular hypertrophy was significantly associated with increased arrhythmia susceptibility. These data demonstrate that distinct somatic events contribute to variable HCM pathology and that cardiac hypertrophy, more than fibrosis or disarray, correlates with arrhythmic risk. We suggest that a shared pathway triggered by sarcomere gene mutations links cardiac hypertrophy and arrhythmias in HCM
PMCID:1307513
PMID: 16332958
ISSN: 0027-8424
CID: 61378

Reduced intercellular coupling leads to paradoxical propagation across the Purkinje-ventricular junction and aberrant myocardial activation

Morley, Gregory E; Danik, Stephan B; Bernstein, Scott; Sun, Yanjie; Rosner, Gregg; Gutstein, David E; Fishman, Glenn I
Ventricular tachycardia is a common heart rhythm disorder and a frequent cause of sudden cardiac death. Aberrant cell-cell coupling through gap junction channels, a process termed gap junction remodeling, is observed in many of the major forms of human heart disease and is associated with increased arrhythmic risk in both humans and in animal models. Genetically engineered mice with cardiac-restricted knockout of Connexin43, the major cardiac gap junctional protein, uniformly develop sudden cardiac death, although a detailed electrophysiological understanding of their profound arrhythmic propensity is unclear. Using voltage-sensitive dyes and high resolution optical mapping techniques, we found that uncoupling of the ventricular myocardium results in ectopic sites of ventricular activation. Our data indicate that this behavior reflects alterations in source-sink relationships and paradoxical conduction across normally quiescent Purkinje-ventricular muscle junctions. The aberrant activation profiles are associated with wavefront collisions, which in the setting of slow conduction may account for the highly arrhythmogenic behavior of Connexin43-deficient hearts. Thus, the extent of gap junction remodeling in diseased myocardium is a critical determinant of cardiac excitation patterns and arrhythmia susceptibility
PMCID:554832
PMID: 15753312
ISSN: 0027-8424
CID: 52629