Try a new search

Format these results:

Searched for:

in-biosketch:true

person:crb253

Total Results:

117


High power RF applications for short duration: Is there a price to pay for increased lesion creation efficiency? [Meeting Abstract]

Holmes, D; Tranter, J; Moon, B; Fish, J; Shai, I; Thao, R; Barbhaiya, C R; Chinitz, L A
Background: Recent studies suggest RF ablation at high power for short durations may be safer and more effcient than using conventional power levels. Comparative data exploring the kinetics and safety of lesion formation at high power/short duration vs. conventional methods is lacking. Objective: The goal of this study is to compare lesion formation and safety across study conditions in an intracardiac model. Methods: Canines (n=24) were anesthetized and intracardiac RF energy was applied in both ventricles over a wide range of conditions (20-50 W, 5-60 s, 5-40 g) in a quasi-random fashion using a contact force, irrigated RF ablation catheter. Hearts were then stained with 1% TTC and formalin fxed Hearts were sectioned and lesions measured A common regression model for lesion width, depth and steam pop likelihood was created, and subsequently realized for three RF powers (see fgure). With these models, the time to achieve target lesion sizes and the relative steam pop risk were compared. Results: Of the 228 lesions created, 227 were found (99%). At 50 W, the maximum lesion width growth rate was 1.4 mm/s, vs. 0.9 mm/s (40 W) and 0.7 mm/s (30 W). Steam pop risk grew by 0.25%/s when ablating at 30 W vs. 1.1%/s at 50 W. Comparable lesions could be created at 30 W and 50 W power with similar steam pop risk (e.g., 30 W took 42 s to create a 10 mm wide lesion vs. 10 s at 50 W with similar risk). Conclusion: In this study, RF ablation lesions can be created about two times faster when using 50 W vs. 30 W; however the steam pop risk increased 4.4 fold. Though lesions are created more effciently, there is a much lower margin for error when ablating at 40-50 W. [Figure Presented]
EMBASE:622470084
ISSN: 1556-3871
CID: 3151312

Quantitative analytics of spatio-temporal catheter stability and lesion sequence in atrial fibrillation ablation [Meeting Abstract]

Yankelson, L; Dai, M; Bernstein, S; Fowler, S; Park, D; Holmes, D; Aizer, A; Chinitz, L A; Barbhaiya, C
Background: Biophysical markers of effective lesion formation during radiofrequency (RF) ablation include impedance decline, stable catheter-tissue contact and local unipolar electrogram change suggesting lesion transmurality The interactions between these factors as well as the implications of lesion sequence are not well understood. Objective: To analyze the impact of catheter stability and lesion sequence on markers of lesion formation during atrial fbrillation (AF) ablation. Methods: Sequential or time-spaced paired RF lesions with goal force-time integral (FTI) 400 gs were placed in prespecifed locations in 20 patients undergoing frst time RF ablation for paroxysmal AF. Custom developed software (MATLAB, Mathworks, USA) was used to extract and analyze lesion data, and 3D catheter position sampled at 60Hz from the CARTO3 mapping system (Biosense Webster, Inc.). All cases were performed using jet ventilation and irrigated force-sensing catheters. Results: 282 ablation lesions were studied, with mean FTI 410.8+/-18.2 gs. Mean impedance decline was greater for the frst lesion in a given pair, 13.6+/-7.9OMEGA vs. 10.7+/-4.6OMEGA, (p < 0.01). Compared to time-spaced lesions, sequential lesions resulted in signifcantly smaller impedance decline (9.8+/-3.8OMEGA vs. 11.8+/-5.2OMEGA, p<0.01), but increased probability of achieving transmurality, as evident by unipolar signal change (68% vs 42% p=0.01). Mean catheter excursion for a single lesion was 0.67+/-0.54mm and maximal catheter excursion was 1.64+/-1.3mm. Ablation catheter spatial stability was found to be inversely related to both amplitude (rho=0.51, p<0.0001) and maximal rate (dI/dT) of impedance decline (rho=0.32, p<0.0001). Conclusion: Lesion sequence and catheter spatial stability were major modifers of impedance change and unipolar electrographic evidence of lesion transmurality during RF ablation. Sequential ablation resulted in transmural lesions more frequently, despite lesser impedance decline. In contrast to previously reported positive association between contact-force and impedance decline, increased ablation catheter spatial stability was associated with lesser impedance decline
EMBASE:622469477
ISSN: 1556-3871
CID: 3151342

Downstream overdrive pacing and intracardiac concealed fusion to guide rapid identification of atrial tachycardia after atrial fibrillation ablation

Barbhaiya, Chirag R; Baldinger, Samuel H; Kumar, Saurabh; Chinitz, Jason S; Enriquez, Alan D; John, Roy; Stevenson, William G; Michaud, Gregory F
Aims: Atrial tachycardia (AT) related to atrial fibrillation (AF) ablation frequently poses a diagnostic challenge. Downstream overdrive pacing (DOP) can be used to rapidly detect reentry and assess proximity of a pacing site to an AT circuit or focus. We hypothesized that systematic DOP using multielectrode catheters would facilitate AT mapping. Methods and results: DOP identified constant fusion when the post-pacing interval (PPI)-tachycardia cycle length (TCL) <40 ms and stimulus to adjacent upstream atrial electrogram interval >75% of TCL. Mapping was performed as follows: (i) CS DOP, (ii) DOP at left atrial (LA) roof, (iii) DOP at selected LA sites based on prior DOP attempts, and (iv) mapping and ablation at regions of fractionated electrograms in region of AT. Activation mapping was performed at operator discretion. AT diagnosis was confirmed by successful ablation or additional mapping when ablation was unsuccessful. Fifty consecutive patients with sustained AT underwent mapping of 68 ATs, of whom 42 (62%) were macroreentrant, 19 were locally reentrant (28%), and 7 (10%) were focal. AT was correctly identified with a median of three DOP attempts. All macroreentrant ATs were identified with
PMID: 28339750
ISSN: 1532-2092
CID: 2499692

Ensite precision automark module: A tool for providing accurate, binary prediction for successful lesion creation [Meeting Abstract]

Holmes, D; Moon, L B; Tranter, J; Fish, J; Thao, R; Barbhaiya, C; Shai, I; Chinitz, L
Introduction Objectives: The AutoMark feature of the EnSite PrecisionTM electroanatomical mapping system allows physicians to create RF ablation lesion markers automatically. Additionally, the lesion markers can be scaled and colored based on up to two metrics of the RF energy delivery including: RF energy, RF duration, impedance drop magnitude, impedance drop (%), average RF power, maximum RF power, average temperature, maximum temperature, average force, and maximum force. Data exploring the optimal use of the AutoMark feature for creating consistent lesions are currently lacking. This study seeks to determine which combinations of two AutoMark metrics yield the best prediction of lesion diameter. Methods: In 24 canines, ventricular focal lesions were created using a contact force sensing, irrigated, RF ablation catheter over a wide range of ablation conditions (20-50W, 5-40 g, 5-60 seconds). Animals were sacrificed, hearts explanted and stained with 1% TTC, and fixed in 10% formalin. Lesions were identified, photographed, and digitally measured. Pairs of AutoMark metrics were exhaustively explored to find optimal combinations of metrics and success criteria for predicting consistent lesion diameter. Results: A total of 228 lesions were created with 227 found at dissection (> 99%). Within the IFU recommended contact force range (10- 30 g, n = 167 lesions), the combinations of energy and impedance drop (%); energy and average power; and average power and impedance drop (%) provided accurate indications for predicting lesion diameter equal to or exceeding 8 mm. The combination of energy >=473 J and impedance drop >=14% resulted in 92.1% lesions with a diameter of at least 8 mm versus only 50% when one or both criteria were not met (P < 0.001). Similarly, energy >=473 J and average RF power >=27 W yielded 95.1% of lesions with a diameter of at least 8 mm versus only 44.6% when one or both criteria were not met (P < 0.001). When RF power was at least 29 W and impedance drop was at least 14%, 100% of the lesions had a diameter of at least 8 mm versus only 54.4% when one or both criteria were not met (P < 0.001). Conclusions: The size and color of lesion markers placed using the AutoMark feature assisted in the identification of lesions of a desired dimension in this acute, preclinical model. Clinical use of theAutoMark featuremay facilitate creation of efficacious lesions
EMBASE:622019206
ISSN: 1540-8167
CID: 3111962

Pacing Mediated Heart Rate Acceleration Improves Catheter Stability and Enhances Markers for Lesion Delivery in Human Atria During Atrial Fibrillation Ablation

Aizer, Anthony; Cheng, Austin V; Wu, Patrick B; Qiu, Jessica K; Barbhaiya, Chirag R; Fowler, Steven J; Bernstein, Scott A; Park, David S; Holmes, Douglas S; Chinitz, Larry A
OBJECTIVES/OBJECTIVE:This study sought to investigate the effect of pacing mediated heart rate modulation on catheter-tissue contact and impedance reduction during radiofrequency ablation in human atria during atrial fibrillation (AF) ablation. BACKGROUND:In AF ablation, improved catheter-tissue contact enhances lesion quality and acute pulmonary vein isolation rates. Previous studies demonstrate that catheter-tissue contact varies with ventricular contraction. The authors investigated the impact of modulating heart rate on the consistency of catheter-tissue contact and its effect on lesion quality. METHODS:Twenty patients undergoing paroxysmal AF ablation received ablation lesions at 15 pre-specified locations (12 left atria, 3 right atria). Patients were assigned randomly to undergo rapid atrial pacing for either the first half or the second half of each lesion. Contact force and ablation data with and without pacing were compared for each of the 300 ablation lesions. RESULTS:Compared with lesion delivery without pacing, pacing resulted in reduced contact force variability, as measured by contact force SD, range, maximum, minimum, and time within the pre-specified goal contact force range (p < 0.05). There was no difference in the mean contact force or force-time integral. Reduced contact force variability was associated with a 30% greater decrease in tissue impedance during ablation (p < 0.001). CONCLUSIONS:Pacing induced heart rate acceleration reduces catheter-tissue contact variability, increases the probability of achieving pre-specified catheter-tissue contact endpoints, and enhances impedance reduction during ablation. Modulating heart rate to improve catheter-tissue contact offers a new approach to optimize lesion quality in AF ablation. (The Physiological Effects of Pacing on Catheter Ablation Procedures to Treat Atrial Fibrillation [PEP AF]; NCT02766712).
PMID: 30067488
ISSN: 2405-5018
CID: 3217102

Slow pathway modification for treatment of pseudo-pacemaker syndrome due to first-degree atrioventricular block with dual atrioventricular nodal physiology

Lader, Joshua M; Park, David; Aizer, Anthony; Holmes, Douglas; Chinitz, Larry A; Barbhaiya, Chirag R
PMCID:5919070
PMID: 29707483
ISSN: 2214-0271
CID: 3056812

Esophageal Injury and Atrioesophageal Fistula Caused by Ablation for Atrial Fibrillation

Kapur, Sunil; Barbhaiya, Chirag; Deneke, Thomas; Michaud, Gregory F
Esophageal perforation is a dreaded complication of atrial fibrillation ablation that occurs in 0.1% to 0.25% of atrial fibrillation ablation procedures. Delayed diagnosis is associated with the development of atrial-esophageal fistula (AEF) and increased mortality. The relationship between the esophagus and the left atrial posterior wall is variable, and the esophagus is most susceptible to injury where it is closest to areas of endocardial ablation. Esophageal ulcer seems to precede AEF development, and postablation endoscopy documenting esophageal ulcer may identify patients at higher risk for AEF. AEF has been reported with all modalities of atrial fibrillation ablation despite esophageal temperature monitoring. Despite the name AEF, fistulas functionally act 1 way, esophageal to atrial, which accounts for the observed symptoms and imaging findings. Because of the rarity of AEF, evaluation and validation of strategies to reduce AEF remain challenging. A high index of suspicion is recommended in patients who develop constitutional symptoms or sudden onset chest pain that start days or weeks after atrial fibrillation ablation. Early detection by computed tomography scan with oral and intravenous contrast is safe and feasible, whereas performance of esophageal endoscopy in the presence of AEF may result in significant neurological injury resulting from air embolism. Outcomes for esophageal stenting are poor in AEF. Aggressive intervention with skilled cardiac and thoracic surgeons may improve chances of stroke-free survival for all types of esophageal perforation.
PMID: 28947480
ISSN: 1524-4539
CID: 2717682

Utilization of a radiation safety time out significantly reduces radiation exposure during electrophysiology procedures [Meeting Abstract]

Aizer, A; Cheng, A V; Wu, P; Holmes, D; Fowler, S J; Bernstein, S A; Park, D S; Wagner, S R; Barbhaiya, C R; Chinitz, L A
Background: Pre-procedure time outs are integral to medicine to improve quality and safety. We hypothesized that a radiation safety time out for EP procedures would reduce radiation exposure levels for patients and staff. Objective: To design, implement and assess the effect of a radiation safety time out on radiation exposure in the EP lab. Methods: Baseline data on all adult EP procedures were collected for 6 months prior to implementation of the radiation safety time out. Upon implementation of the time out, data were collected prospectively with analyses to be performed every 3 months for up to 12 months. The primary endpoint was mean dose area product (DAP). Secondary endpoints were reference dose, fluoroscopy time, use of additional shielding, and use of alternative imaging. Results: The study was halted after three months. In total, 592 cases prior to the time out and 448 cases during implementation of the time out were included. Use of the time out resulted in a 22% reduction in the DAP (p = 0.013). The mean reference dose was also reduced by 26%. The use of additional radiation shields and ultrasound imaging for venous access increased significantly during the time out period. These differences remained significant when adjusted for BMI, proceduralist, and procedure type. There was no increase in procedure time or complications with the time out (Table). Conclusion: Implementation of a radiation safety time out significantly reduces radiation exposure during EP procedures. EP laboratories, as well as other areas of medicine that use fluoroscopy, should strongly consider the use of radiation safety time outs to reduce radiation exposures and improve safety. (Table presented)
EMBASE:617042238
ISSN: 1556-3871
CID: 2620902

Comparison of Wilson central terminal and IVC indifferent electrode for unipolar mapping of idiopathic outflow tract premature ventricular contractions [Meeting Abstract]

Barbhaiya, C R; Fowler, S; Bernstein, S A; Park, D S; Holmes, D; Aizer, A; Chinitz, L A
Background: Analysis of the local unipolar electrogram aids premature ventricular contraction (PVC) localization in catheter ablation of idiopathic, outflow tract PVCs. A unipolar electrogram QS complex may be seen in the region of PVC origin, but the specificity of this finding is low. The unipolar anodal electrode utilized for PVC mapping is typically Wilson central terminal (WCT) or an indifferent electrode placed within the inferior vena cava (IVC). The optimal unipolar electrode selection for unipolar PVC mapping is unknown. Objective: To compare unipolar mapping of idiopathic outflow tract PVCs using WCT to unipolar mapping using an IVC electrode. Methods: PVC mapping and ablation was performed in 20 consecutive patients presenting for first-time ablation of idiopathic, outflow tract PVCs. The unipolar electrode utilized for initial mapping was randomly assigned and blinded to the operator. Mapping was performed using the CARTO 3 mapping system and SmartTouch RF ablation catheter (Biosense Webster, Inc.). Activation mapping and pace-mapping was performed at the discretion of the operator. Locations with a QS complex were annotated on the electroanatomic map. After a complete map was created blinded mapping was repeated with the alternate unipolar electrode prior to RF application. Results: PVCs were localized to the right ventricular outflow tract in 18 patients (90%) and to the left ventricular outflow tract in 2 patients (10%). Complete unipolar mapping could not be completed in 4 of 20 (20%) of cases due to infrequency of PVCs. In the 16 remaining patients, QS complex surface area was significantly larger with WCT than with the IVC electrode (3.11 +/- 1.8 cm2 vs. 1.3 +/- 0.8 cm2, p < 0.001). The IVC electrode QS area was completely within the WCT QS area in all cases, and the ratio of WCT QS area to IVC electrode QS area was 2.6 +/- 0.8 (range 1.8 to 4.4). The area of RF application at which PVCs were durably suppressed was within the IVC electrode QS area in all patients. Conclusion: Utilization of an indifferent IVC electrode may improve precision and specificity of unipolar mapping in catheter ablation of idiopathic, outflow tract PVCs
EMBASE:617041256
ISSN: 1556-3871
CID: 2620952

Left atrial posterior wall isolation compared to stepwise linear ablation for nonparoxysmal atrial fibrillation using a contact force sensing radiofrequency ablation catheter [Meeting Abstract]

Knotts, R J; Barbhaiya, C R; Bockstall, K E; Bernstein, S A; Park, D S; Fowler, S J; Holmes, D; Aizer, A; Chinitz, L A
Background: Unfavorable outcomes observed with stepwise linear ablation of non-paroxysmal AF (NPAF) in large clinical trials utilizing ablation catheters without contact-force sensing (CFS) may be attributable to pro-arrhythmic effects of incomplete ablation lines. The optimal ablation strategy for catheter ablation of NPAF using a contact force sensing radiofrequency (RF) ablation catheter remains unclear. Objective: To compare catheter ablation outcomes of stepwise linear ablation to left atrial (LA) posterior wall isolation in patients undergoing NPAF ablation using a CFS RF ablation catheter. Methods: We performed pulmonary vein antral isolation (PVAI) followed by isolation of the LA posterior wall in 80 consecutive patients undergoing first-time NPAF ablation between November 2015 and March 2016 (Group 1) and compared clinical outcomes to those of 112 consecutive patients who underwent PVAI followed by step-wise linear ablation for NPAF between May 2014 and November 2015 (Group 2). All ablation procedures were performed using the Carto 3 mapping system and SmartTouch RF ablation catheter (Biosense Webster, Inc.). Arrhythmia recurrence was assessed using 2-week event monitors at 3-month intervals. Arrhythmia-free survival at 12 months was estimated using the Kaplan-Meier method. Results: Baseline characteristics of Group 1 and Group 2 were similar. At 12 months follow-up, arrhythmia-free survival was significantly greater in Group 1 patients compared with Group 2 (81.9% vs. 67.5%, respectively; p=0.0318). There was no significant difference in survival free from AF between group 1 and group 2 (89% vs. 84.1%, respectively; p=0.3431), however group 1 patients developed significantly fewer post-ablation atrial tachycardias (AT) than group 2 patients (8.1% vs 30.1%, respectively; p<0.001). Conclusion: Among patients undergoing NPAF ablation using a contact force sensing RF ablation catheter, LA posterior wall isolation resulted in fewer recurrent atrial arrhythmias than a stepwise linear approach. The reduction in recurrent atrial arrhythmias is driven primarily by a reduction in recurrent AT
EMBASE:617041092
ISSN: 1556-3871
CID: 2623582