Searched for: in-biosketch:true
person:crb253
Simultaneous pace-ablate during CARTO-guided pulmonary vein isolation with a contact-force sensing radiofrequency ablation catheter
Barbhaiya, Chirag R; Aizer, Anthony; Knotts, Robert; Bernstein, Scott; Park, David; Holmes, Douglas; Chinitz, Larry A
PURPOSE/OBJECTIVE:Elimination of pace-capture along pulmonary vein isolation (PVI) lesion sets reduces atrial fibrillation (AF) recurrence in catheter ablation of paroxysmal AF. Pacing from the RF ablation electrode during RF application is prevented within the CARTO electroanatomic mapping system (Biosense Webster, Inc.) due to theoretical safety considerations. We evaluated a method of pacing the distal ablation electrode during RF application in the CARTO system, thus avoiding repeated activation and inactivation of the pacing channel and facilitating immediate recognition of pace-capture loss. We investigated the safety, feasibility, and utility of simultaneous pace-ablate (SPA) during AF ablation with the CARTO-3 system and a contact-force sensing RF ablation catheter. METHODS:Safety of feasibility of SPA was evaluated in 250 patients undergoing first-time AF ablation. Frequency and regional distribution of pace-capture following PVI was evaluated in a cohort of 50 consecutive patients undergoing catheter ablation of paroxysmal AF. RESULTS:SPA was successfully performed in all 250 patients without adverse event. At least one pace-capture site was noted in 22 of 50 PAF patients (44%), and pace-capture following PVI was most common at anterior and superior left atrial sites. There were 2.0 ± 3.3 RF applications during pacing via the distal ablation electrode per patient, and all lesions sets were successfully rendered unexcitable. CONCLUSIONS:Pace-capture along the completed PVI lesion set remains common despite utilization of contact-force sensing RF ablation catheters and automated lesion annotation. Simultaneous pace-ablate in AF ablation using the CARTO system may be safely used to render atrial lesion sets unexcitable.
PMID: 30264289
ISSN: 1572-8595
CID: 3314572
Good News: Pulmonary Veins Are Isolated! Bad News: Atrial Fibrillation Is Back [Editorial]
Barbhaiya, Chirag R; Holmes, Douglas
PMID: 30573122
ISSN: 2405-5018
CID: 3556762
Two procedure outcomes for non-paroxysmal atrial fibrillation using a contact-force sensing radiofrequency ablation catheter: Left atrial posterior wall isolation versus stepwise linear ablation [Meeting Abstract]
Knotts, R; Barbhaiya, C R; Soria, C; Bernstein, S A; Park, D S; Fowler, S J; Holmes, D; Aizer, A; Chinitz, L A
Background: Unfavorable outcomes for stepwise linear ablation of non-paroxysmal atrial fbrillation (NPAF) in clinical trials may be attributable to pro-arrhythmic effects of incomplete ablation lines. It is unknown if recurrent arrhythmia following stepwise linear ablation is more likely to be successfully ablated compared to recurrent arrhythmia following a more limited initial procedure The optimal ablation strategy for catheter ablation of NPAF using a contact-force sensing (CFS) radiofrequency ablation (RFA) catheter remains unclear. Objective: To compare 2-procedure outcomes of stepwise linear RFA to left atrial posterior wall isolation in patients undergoing NPAF ablation using a CFS RFA catheter. Methods: We compared clinical outcomes of two cohorts of 100 consecutive NPAF patients undergoing frst-time RFA using a CFS RFA catheter. Group 1: stepwise linear ablation (July 2014-July 2015); Group 2: left atrial posterior wall isolation (October 2015-June 2016). Arrhythmia recurrence was assessed using 2-week event monitors at 3-month intervals following ablation procedures. Results: Baseline characteristics of the two groups were similar. Mean follow-up time was 656 +/- 361 days for Group 1 and 436 +/- 228 days for Group 2. At 24-month follow up, Kaplan-Meier estimated single procedure arrhythmia free survival was signifcantly greater in Group 2 compared to Group 1 (76% vs 59%, respectively; p = 0.01), primarily driven by a higher rate of recurrence of atrial tachycardia (12% vs 35%, respectively; p < 0.001). Among patients with recurrent arrhythmia after a single procedure, Group 2 patients were less likely to require repeat ablation compared to Group 1 (6/24 vs 34/41, respectively; p < 0.001) and less likely to recur after repeat ablation (1/6 vs 13/34, respectively; p = 0.001). Conclusion: Compared to stepwise linear ablation, LA posterior wall isolation for catheter ablation of NPAF resulted in a lower incidence of recurrent arrhythmia at 2 years, a lower likelihood of requiring repeat ablation amongst patients with recurrence, and a lower likelihood of recurrence following a second ablation
EMBASE:622470830
ISSN: 1556-3871
CID: 3151272
Healthcare utilization impact and procedural outcomes of urgent catheter ablation for treatment-resistant symptomatic atrial fibrillation [Meeting Abstract]
Barbhaiya, C R; Mathews, T; Warrier, N P; Beccarino, N; Holmes, D; Aizer, A; Jones, S; Chinitz, L A
Background: Catheter ablation has become an increasingly common elective therapy for symptomatic atrial fbrillation (AF). Few data are available regarding outcomes of urgent AF ablation performed during AF related hospital admission, and the impact of these procedures on healthcare utilization. Objective: To evaluate patient characteristics, procedural outcomes, and impact on healthcare utilization in patients undergoing urgent AF ablation. Methods: Procedural outcomes of patients undergoing urgent frst-time AF ablation during an AF related hospital admission between 1/2014 and 8/2017 at a single tertiary care medical center were compared to those of 2:1 matched control patients undergoing frst-time elective AF ablation. An inverse probability weighted marginal structural model was constructed and the weighted means of the average hospital days and number of hospital visits in the six-months post ablation were compared. Results: 25 patients (1% of frst-time AF ablations) underwent an urgent procedure. There were no major procedural complications in either group. Incidence of arrhythmia recurrence within one year was similar in urgent and elective patients (20% vs. 18%, respectively, p=0.85). Urgent ablation patients had a greater number of hospital utilization days in the 6-months pre-ablation (mean 8.9+/-4.5 vs 2.6+/-1.1, p<.001) and a similar number of hospital utilization days in the 6-months post-ablation (1.8+/-4.5 vs 0.59+/- 1.07, p=.05) The marginal structural model of the change in number of hospital visits due to being in the urgent ablation group was-0.924 (-1.43 to-0.41; P <0.001). Conclusion: Urgent ablation for treatment resistant, symptomatic AF is feasible and safe with procedural outcomes were similar to those of elective AF ablation. There is and increased rate of healthcare utilization in prior to ablation in the urgent group, and a statistically signifcant reduction in healthcare utilization following urgent AF ablation. Defning the cost-effectiveness of and optimal patient selection for urgent ablation requires further investigation
EMBASE:622470772
ISSN: 1556-3871
CID: 3151282
Catheter spatial instability predicts arrhythmia recurrence following atrial fibrillation ablation [Meeting Abstract]
Yankelson, L; Dai, M; Bernstein, S A; Fowler, S J; Park, D S; Holmes, D; Aizer, A; Chinitz, L A; Barbhaiya, C R
Background: Optimal contact-force during atrial fbrillation (AF) radiofrequency (RF) ablation is associated with improved procedural outcomes The extent to which ablation catheter spatial stability varies between patients and predicts procedural success is unknown. Objective: To examine the prognostic signifcance of intra-procedure ablation catheter spatial stability on one year arrhythmia recurrence following ablation of paroxysmal atrial fbrillation. Methods: 100 consecutive patients undergoing frst time RF ablation for paroxysmal AF under general anesthesia were analyzed. Spatial localization of the ablation catheter sampled at 60 Hz during RF application was extracted from the CARTO3 system (Biosense Webster, Inc.) and analyzed using custom software (MATLAB, Mathworks, USA) to determine mean and maximum catheter excursion relative to mean catheter location during point-by-point RF ablation. All lesions for a given patient were then averaged to form composite measures of catheter stability The primary end point was freedom from documented recurrence of atrial arrhythmia lasting longer than 30 seconds after a single ablation procedure. Results: At one year, 86% of patients were free from recurrent AF. There was no signifcant difference in clinical and echocardiographic baseline characteristics between patients with and without recurrent arrhythmia There was no signifcant difference in lesion number, average contact-force, average impedance decrease, or RF time between patients who did recur and those who did not. For all patients, maximum catheter excursion was 2.84 +/- 0.40mm and mean catheter excursion was 0.99 +/- 0.16mm. Patients with arrhythmia recurrence had signifcantly greater maximum (3.07 +/- 0.38mm vs 2.80 +/- 0.40mm, p = 0.03) and mean (1.08 +/- 0.13mm vs 0.98 +/- 0.17mm, p = 0.01) catheter excursion compared to those without recurrence. Univariate regression demonstrated that maximal catheter excursion was a signifcant predictor of arrhythmia recurrence (OR 5.1 per 1mm excursion increase, 95% CI 1.2-21.9, p=0.03). Conclusion: Quantitative measures of ablation catheter spatial stability may be novel and potentially modifable predictors of procedural success during RF ablation of AF
EMBASE:622470104
ISSN: 1556-3871
CID: 3151302
High power RF applications for short duration: Is there a price to pay for increased lesion creation efficiency? [Meeting Abstract]
Holmes, D; Tranter, J; Moon, B; Fish, J; Shai, I; Thao, R; Barbhaiya, C R; Chinitz, L A
Background: Recent studies suggest RF ablation at high power for short durations may be safer and more effcient than using conventional power levels. Comparative data exploring the kinetics and safety of lesion formation at high power/short duration vs. conventional methods is lacking. Objective: The goal of this study is to compare lesion formation and safety across study conditions in an intracardiac model. Methods: Canines (n=24) were anesthetized and intracardiac RF energy was applied in both ventricles over a wide range of conditions (20-50 W, 5-60 s, 5-40 g) in a quasi-random fashion using a contact force, irrigated RF ablation catheter. Hearts were then stained with 1% TTC and formalin fxed Hearts were sectioned and lesions measured A common regression model for lesion width, depth and steam pop likelihood was created, and subsequently realized for three RF powers (see fgure). With these models, the time to achieve target lesion sizes and the relative steam pop risk were compared. Results: Of the 228 lesions created, 227 were found (99%). At 50 W, the maximum lesion width growth rate was 1.4 mm/s, vs. 0.9 mm/s (40 W) and 0.7 mm/s (30 W). Steam pop risk grew by 0.25%/s when ablating at 30 W vs. 1.1%/s at 50 W. Comparable lesions could be created at 30 W and 50 W power with similar steam pop risk (e.g., 30 W took 42 s to create a 10 mm wide lesion vs. 10 s at 50 W with similar risk). Conclusion: In this study, RF ablation lesions can be created about two times faster when using 50 W vs. 30 W; however the steam pop risk increased 4.4 fold. Though lesions are created more effciently, there is a much lower margin for error when ablating at 40-50 W. [Figure Presented]
EMBASE:622470084
ISSN: 1556-3871
CID: 3151312
Quantitative analytics of spatio-temporal catheter stability and lesion sequence in atrial fibrillation ablation [Meeting Abstract]
Yankelson, L; Dai, M; Bernstein, S; Fowler, S; Park, D; Holmes, D; Aizer, A; Chinitz, L A; Barbhaiya, C
Background: Biophysical markers of effective lesion formation during radiofrequency (RF) ablation include impedance decline, stable catheter-tissue contact and local unipolar electrogram change suggesting lesion transmurality The interactions between these factors as well as the implications of lesion sequence are not well understood. Objective: To analyze the impact of catheter stability and lesion sequence on markers of lesion formation during atrial fbrillation (AF) ablation. Methods: Sequential or time-spaced paired RF lesions with goal force-time integral (FTI) 400 gs were placed in prespecifed locations in 20 patients undergoing frst time RF ablation for paroxysmal AF. Custom developed software (MATLAB, Mathworks, USA) was used to extract and analyze lesion data, and 3D catheter position sampled at 60Hz from the CARTO3 mapping system (Biosense Webster, Inc.). All cases were performed using jet ventilation and irrigated force-sensing catheters. Results: 282 ablation lesions were studied, with mean FTI 410.8+/-18.2 gs. Mean impedance decline was greater for the frst lesion in a given pair, 13.6+/-7.9OMEGA vs. 10.7+/-4.6OMEGA, (p < 0.01). Compared to time-spaced lesions, sequential lesions resulted in signifcantly smaller impedance decline (9.8+/-3.8OMEGA vs. 11.8+/-5.2OMEGA, p<0.01), but increased probability of achieving transmurality, as evident by unipolar signal change (68% vs 42% p=0.01). Mean catheter excursion for a single lesion was 0.67+/-0.54mm and maximal catheter excursion was 1.64+/-1.3mm. Ablation catheter spatial stability was found to be inversely related to both amplitude (rho=0.51, p<0.0001) and maximal rate (dI/dT) of impedance decline (rho=0.32, p<0.0001). Conclusion: Lesion sequence and catheter spatial stability were major modifers of impedance change and unipolar electrographic evidence of lesion transmurality during RF ablation. Sequential ablation resulted in transmural lesions more frequently, despite lesser impedance decline. In contrast to previously reported positive association between contact-force and impedance decline, increased ablation catheter spatial stability was associated with lesser impedance decline
EMBASE:622469477
ISSN: 1556-3871
CID: 3151342
Downstream overdrive pacing and intracardiac concealed fusion to guide rapid identification of atrial tachycardia after atrial fibrillation ablation
Barbhaiya, Chirag R; Baldinger, Samuel H; Kumar, Saurabh; Chinitz, Jason S; Enriquez, Alan D; John, Roy; Stevenson, William G; Michaud, Gregory F
Aims: Atrial tachycardia (AT) related to atrial fibrillation (AF) ablation frequently poses a diagnostic challenge. Downstream overdrive pacing (DOP) can be used to rapidly detect reentry and assess proximity of a pacing site to an AT circuit or focus. We hypothesized that systematic DOP using multielectrode catheters would facilitate AT mapping. Methods and results: DOP identified constant fusion when the post-pacing interval (PPI)-tachycardia cycle length (TCL) <40 ms and stimulus to adjacent upstream atrial electrogram interval >75% of TCL. Mapping was performed as follows: (i) CS DOP, (ii) DOP at left atrial (LA) roof, (iii) DOP at selected LA sites based on prior DOP attempts, and (iv) mapping and ablation at regions of fractionated electrograms in region of AT. Activation mapping was performed at operator discretion. AT diagnosis was confirmed by successful ablation or additional mapping when ablation was unsuccessful. Fifty consecutive patients with sustained AT underwent mapping of 68 ATs, of whom 42 (62%) were macroreentrant, 19 were locally reentrant (28%), and 7 (10%) were focal. AT was correctly identified with a median of three DOP attempts. All macroreentrant ATs were identified with =6 DOP attempts. One AT (1.6%) was terminated by DOP, and three ATs (4.8%) required activation mapping. Intracardiac concealed fusion was seen in 26 ATs (38%), each of which was successfully ablated. Conclusion: Reentry could be demonstrated in a substantial majority of AF ablation-related AT. A stepwise diagnostic approach using DOP and recognition of intracardiac concealed fusion can be used to rapidly identify and ablate reentrant AT.
PMID: 28339750
ISSN: 1532-2092
CID: 2499692
Ensite precision automark module: A tool for providing accurate, binary prediction for successful lesion creation [Meeting Abstract]
Holmes, D; Moon, L B; Tranter, J; Fish, J; Thao, R; Barbhaiya, C; Shai, I; Chinitz, L
Introduction Objectives: The AutoMark feature of the EnSite PrecisionTM electroanatomical mapping system allows physicians to create RF ablation lesion markers automatically. Additionally, the lesion markers can be scaled and colored based on up to two metrics of the RF energy delivery including: RF energy, RF duration, impedance drop magnitude, impedance drop (%), average RF power, maximum RF power, average temperature, maximum temperature, average force, and maximum force. Data exploring the optimal use of the AutoMark feature for creating consistent lesions are currently lacking. This study seeks to determine which combinations of two AutoMark metrics yield the best prediction of lesion diameter. Methods: In 24 canines, ventricular focal lesions were created using a contact force sensing, irrigated, RF ablation catheter over a wide range of ablation conditions (20-50W, 5-40 g, 5-60 seconds). Animals were sacrificed, hearts explanted and stained with 1% TTC, and fixed in 10% formalin. Lesions were identified, photographed, and digitally measured. Pairs of AutoMark metrics were exhaustively explored to find optimal combinations of metrics and success criteria for predicting consistent lesion diameter. Results: A total of 228 lesions were created with 227 found at dissection (> 99%). Within the IFU recommended contact force range (10- 30 g, n = 167 lesions), the combinations of energy and impedance drop (%); energy and average power; and average power and impedance drop (%) provided accurate indications for predicting lesion diameter equal to or exceeding 8 mm. The combination of energy >=473 J and impedance drop >=14% resulted in 92.1% lesions with a diameter of at least 8 mm versus only 50% when one or both criteria were not met (P < 0.001). Similarly, energy >=473 J and average RF power >=27 W yielded 95.1% of lesions with a diameter of at least 8 mm versus only 44.6% when one or both criteria were not met (P < 0.001). When RF power was at least 29 W and impedance drop was at least 14%, 100% of the lesions had a diameter of at least 8 mm versus only 54.4% when one or both criteria were not met (P < 0.001). Conclusions: The size and color of lesion markers placed using the AutoMark feature assisted in the identification of lesions of a desired dimension in this acute, preclinical model. Clinical use of theAutoMark featuremay facilitate creation of efficacious lesions
EMBASE:622019206
ISSN: 1540-8167
CID: 3111962
Pacing Mediated Heart Rate Acceleration Improves Catheter Stability and Enhances Markers for Lesion Delivery in Human Atria During Atrial Fibrillation Ablation
Aizer, Anthony; Cheng, Austin V; Wu, Patrick B; Qiu, Jessica K; Barbhaiya, Chirag R; Fowler, Steven J; Bernstein, Scott A; Park, David S; Holmes, Douglas S; Chinitz, Larry A
OBJECTIVES/OBJECTIVE:This study sought to investigate the effect of pacing mediated heart rate modulation on catheter-tissue contact and impedance reduction during radiofrequency ablation in human atria during atrial fibrillation (AF) ablation. BACKGROUND:In AF ablation, improved catheter-tissue contact enhances lesion quality and acute pulmonary vein isolation rates. Previous studies demonstrate that catheter-tissue contact varies with ventricular contraction. The authors investigated the impact of modulating heart rate on the consistency of catheter-tissue contact and its effect on lesion quality. METHODS:Twenty patients undergoing paroxysmal AF ablation received ablation lesions at 15 pre-specified locations (12 left atria, 3 right atria). Patients were assigned randomly to undergo rapid atrial pacing for either the first half or the second half of each lesion. Contact force and ablation data with and without pacing were compared for each of the 300 ablation lesions. RESULTS:Compared with lesion delivery without pacing, pacing resulted in reduced contact force variability, as measured by contact force SD, range, maximum, minimum, and time within the pre-specified goal contact force range (p < 0.05). There was no difference in the mean contact force or force-time integral. Reduced contact force variability was associated with a 30% greater decrease in tissue impedance during ablation (p < 0.001). CONCLUSIONS:Pacing induced heart rate acceleration reduces catheter-tissue contact variability, increases the probability of achieving pre-specified catheter-tissue contact endpoints, and enhances impedance reduction during ablation. Modulating heart rate to improve catheter-tissue contact offers a new approach to optimize lesion quality in AF ablation. (The Physiological Effects of Pacing on Catheter Ablation Procedures to Treat Atrial Fibrillation [PEP AF]; NCT02766712).
PMID: 30067488
ISSN: 2405-5018
CID: 3217102