Try a new search

Format these results:

Searched for:

in-biosketch:true

person:hagiwm01

Total Results:

74


Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging--initial experience

Hagiwara, Mari; Rusinek, Henry; Lee, Vivian S; Losada, Mariela; Bannan, Michael A; Krinsky, Glenn A; Taouli, Bachir
Institutional review board approval and informed consent were obtained for this HIPAA-compliant study. The purpose of this study was to prospectively evaluate sensitivity and specificity of various estimated perfusion parameters at three-dimensional (3D) perfusion magnetic resonance (MR) imaging of the liver in the diagnosis of advanced liver fibrosis (stage >or= 3), with histologic analysis, liver function tests, or MR imaging as the reference standard. Whole-liver 3D perfusion MR imaging was performed in 27 patients (17 men, 10 women; mean age, 55 years) after dynamic injection of 8-10 mL of gadopentetate dimeglumine. The following estimated perfusion parameters were measured with a dual-input single-compartment model: absolute arterial blood flow (F(a)), absolute portal venous blood flow (F(p)), absolute total liver blood flow (F(t)) (F(t) = F(a) + F(p)), arterial fraction (ART), portal venous fraction (PV), distribution volume (DV), and mean transit time (MTT) of gadopentetate dimeglumine. Patients were assigned to two groups (those with fibrosis stage <or= 2 and those with fibrosis stage >or= 3), and the nonparametric Mann-Whitney test was used to compare F(a), F(p), F(t), ART, PV, DV, and MTT between groups. Receiver operating characteristic curve analysis was used to assess the utility of perfusion estimates as predictors of advanced liver fibrosis. There were significant differences for all perfusion MR imaging-estimated parameters except F(p) and F(t). There was an increase in F(a), ART, DV, and MTT and a decrease in PV in patients with advanced fibrosis compared with those without advanced fibrosis. DV had the best performance, with an area under the receiver operating characteristic curve of 0.824, a sensitivity of 76.9% (95% confidence interval: 46.2%, 94.7%), and a specificity of 78.5% (95% confidence interval: 49.2%, 95.1%) in the prediction of advanced fibrosis
PMID: 18195377
ISSN: 1527-1315
CID: 76458

Modifying effects of fermented brown rice on fecal microbiota in rats

Kataoka, Keiko; Kibe, Ryoko; Kuwahara, Tomomi; Hagiwara, Mari; Arimochi, Hideki; Iwasaki, Teruaki; Benno, Yoshimi; Ohnishi, Yoshinari
Brown rice fermented by Aspergillus oryzae (FBRA) is a fiber-rich food. Effects of dietary administration of FBRA on rat fecal microbiota composition were examined. Male Wistar rats were fed a basal diet or a 5% FBRA- or 10% FBRA-containing diet, and fecal microbiota was analyzed by culture and terminal-restriction fragment length polymorphism (T-RFLP) analysis. The viable cell number of lactobacilli significantly increased after feeding 10% FBRA diet for 3 weeks compared with that in the basal diet group and that in the same group at the beginning of the experiment (day 0). An increase in the viable cell number of lactobacilli was also observed after feeding 10% FBRA for 12 weeks compared with the effect of a basal diet. T-RFLP analysis showed an increase in the percentage of lactobacilli cells in feces of rats fed 10% FBRA for 14 weeks. Lactobacilli strains isolated from rat feces were divided into six types based on their randomly amplified polymorphic DNA (RAPD) patterns, and they were identified as Lactobacillus reuteri, L. intestinalis and lactobacilli species based on homology of the partial sequence of 16S rDNA. FBRA contains lactic acid bacteria, but their RAPD patterns and identified species were different from those in rat feces. These results indicated that dietary FBRA increases the number of lactobacilli species already resident in the rat intestine.
PMID: 17826198
ISSN: 1075-9964
CID: 993752

Inhibitory effect of fluvastatin on ileal ulcer formation in rats induced by nonsteroidal antiinflammatory drug

Hagiwara, Mari; Kataoka, Keiko; Arimochi, Hideki; Kuwahara, Tomomi; Nakayama, Haruyuki; Ohnishi, Yoshinari
AIM: Nonsteroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal damage as one of their side effects in humans and experimental animals. Lipid peroxidation plays an important role in NSAID-induced ulceration. The aim of this study was to investigate the inhibitory effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors on the ulceration in small intestines of rats. METHODS: The effects of three HMG-CoA reductase inhibitors, fluvastatin, pravastatin and atorvastatin on ileal ulcer formation in 5-bromo-2-(4-fluorophenyl)-3-(4- methylsulfonylphenyl) thiophene (BFMeT)-treated rats were examined. Antioxidative activity of the inhibitors was measured by a redox-linked colorimetric method. RESULTS: Fluvastatin, which was reported to have antioxidative activity, repressed the ileal ulcer formation in rats treated with BFMeT an NSAIDs. However, the other HMG-CoA reductase inhibitors (pravastatin and atorvastatin) did not repress the ileal ulcer formation. Among these HMG-CoA reductase inhibitors, fluvastatin showed a significantly stronger reducing power than the others (pravastatin, atorvastatin). CONCLUSION: Fluvastatin having the antioxidaitive activity suppresses ulcer formation in rats induced by NSAIDs.
PMCID:4250768
PMID: 15742411
ISSN: 1007-9327
CID: 937362

Role of unbalanced growth of gram-negative bacteria in ileal ulcer formation in rats treated with a nonsteroidal anti-inflammatory drug

Hagiwara, Mari; Kataoka, Keiko; Arimochi, Hideki; Kuwahara, Tomomi; Ohnishi, Yoshinari
Nonsteroidal anti-inflammatory drugs (NSAIDs) induced formation of intestinal ulcers as side effects, in which an unbalanced increase in the number of gram-negative bacteria in the small intestine plays an important role. To clarify how intestinal microflora are influenced by NSAIDs, we examined the effects of 5-bromo-2-(4-fluorophenyl)-3-(4-methylsulfonylphenyl) thiophene (BFMeT), an NSAID, on intestinal motility and on the growth of Escherichia coli and Lactobacillus acidophilus. Transit index, a marker of peristalsis, was not different in BFMeT-treated and solvent-treated rats, indicating that BFMeT increased the number of gram-negative bacteria without suppression of peristalsis. The factors that affect the growth of intestinal bacteria were not found in intestinal contents of BFMeT-treated rats, because the growth of E. coli and that of L. acidophilus in the supernatants of small intestinal contents of BFMeT-treated rats and solvent-treated rats were not different. The mechanism of the increase in the number of gram-negative bacteria is still unclear, but heat-killed E. coli cells and their purified lipopolysaccharide (LPS) caused deterioration of BFMeT-induced ileal ulcers, while they could not cause the ulcers by themselves without the NSAID. Concentration of LPS and myeloperoxidase activity level were elevated correlatively in the intestinal mucosa of rats treated with LPS and BFMeT. These results suggest that an increase in the number of gram-negative bacteria and their LPS in the mucosa induces activation of neutrophils together with the help of NSAID action and causes ulcer formation.
PMID: 15000255
ISSN: 1343-1420
CID: 993492