Try a new search

Format these results:

Searched for:

in-biosketch:true

person:mogila01

Total Results:

105


Subthalamic nucleus stimulation in patients with a prior pallidotomy

Mogilner, Alon Y; Sterio, Djordje; Rezai, Ali R; Zonenshayn, Martin; Kelly, Patrick J; Beric, Aleksandar
OBJECT: A substantial number of patients with Parkinson disease (PD) who have undergone unilateral stereotactic pallidotomy ultimately develop symptom progression, becoming potential candidates for further surgical treatment. Bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) has been shown to be effective in the treatment of a subset of patients with refractory PD. Microelectrode recording is performed to help localize the STN and guide final placement of the electrode. Potential alterations in physiological features of the STN after pallidotomy may complicate localization of this structure in this group of patients. METHODS: Bilateral STN DBS surgery guided by microelectrode recording was performed in six patients who had undergone previous unilateral pallidotomies. Physiologically obtained parameters of the STN, including trajectory length, mean firing rate, cell number, and cell density were calculated. These data were compared with those from the side without prior pallidotomy within each patient, as well as with those from our series of 49 subthalamic nuclei explored in 26 patients who had not undergone prior pallidotomy but who underwent bilateral STN stimulator placement. In all patients, analysis of STN cellular activity on the side ipsilateral to the pallidotomy demonstrated a lower mean firing frequency than on the contralateral, intact side. The physiological features on the intact side were not significantly different from those found in our series of patients who had not undergone prior pallidotomy. CONCLUSIONS: Physicians who perform STN surgery in patients with prior pallidotomy should be aware of the electrophysiological differences between the STN that had undergone pallidotomy and the one that had not, to avoid prolonging recording time to search for the typical STN. The implications of these findings for the current models of information processing in the basal ganglia are discussed
PMID: 11990804
ISSN: 0022-3085
CID: 27569

Neurophysiological modulation of the subthalamic nucleus by pallidal stimulation in Parkinson's disease

Sterio, D; Rezai, A; Mogilner, A; Zonenshayn, M; Gracies, J M; Kathirithamby, K; Beric, A
OBJECTIVES: Current models of basal ganglia dysfunction in Parkinson's disease suggest a pivotal role of subthalamic nucleus (STN) hyperactivity. There is a direct excitatory output to the globus pallidus internus (GPi), which in turn hyperinhibits the motor thalamus and leads to a lack of cortical facilitation. The model, however, does not address the reciprocal influence of GPi on STN activity. METHODS: Measurement of immediate changes in STN single cell activity after GPi deep brain stimulation (DBS). RESULTS: An opposite effect of GPi DBS in the dorsal versus ventral STN was found. There was an almost exclusive reduction of firing rate in the dorsal region of the STN, whereas the cells in the ventral region exhibited facilitation similar to the recordings from the substantia nigra pars reticulata. CONCLUSION: Although these findings require confirmation, they suggest that the current theories of GPi DBS action, which do not include a GPi-STN modulation, are most likely incomplete
PMCID:1737769
PMID: 11861688
ISSN: 0022-3050
CID: 27276

Neurophysiological refinement of subthalamic nucleus targeting

Sterio, Djordje; Zonenshayn, Martin; Mogilner, Alon Y; Rezai, Ali R; Kiprovski, Kiril; Kelly, Patrick J; Beric, Aleksandar
OBJECTIVE: Advances in image-guided stereotactic surgery, microelectrode recording techniques, and stimulation technology have been the driving forces behind a resurgence in the use of functional neurosurgery for the treatment of movement disorders. Despite the dramatic effects of deep brain stimulation (DBS) techniques in ameliorating the symptoms of Parkinson's disease, many critical questions related to the targeting, effects, and mechanisms of action of DBS remain unanswered. In this report, we describe the methods used to localize the subthalamic nucleus (STN) and we present the characteristics of encountered cells. METHODS: Twenty-six patients with idiopathic Parkinson's disease underwent simultaneous, bilateral, microelectrode-refined, DBS electrode implantation into the STN. Direct and indirect magnetic resonance imaging-based anatomic targeting was used. Cellular activity was analyzed for various neurophysiological parameters, including firing rates and interspike intervals. Physiological targeting confirmation was obtained by performing macrostimulation through the final DBS electrode. RESULTS: The average microelectrode recording time for each trajectory was 20 minutes, with a mean of 5.2 trajectories/patient. Typical trajectories passed through the anterior thalamus, zona incerta/fields of Forel, STN, and substantia nigra-pars reticulata. Each structure exhibited a characteristic firing pattern. In particular, recordings from the STN exhibited an increase in background activity and an irregular firing pattern, with a mean rate of 47 Hz. The mean cell density was 5.6 cells/mm, with an average maximal trajectory length of 5.3 mm. Macrostimulation via the DBS electrode yielded mean sensory and motor thresholds of 4.2 and 5.7 V, respectively. CONCLUSION: The principal objectives of microelectrode recording refinement of anatomic targeting are precise identification of the borders of the STN and thus determination of its maximal length. Microelectrode recording also allows identification of the longest and most lateral segment of the STN, which is our preferred target for STN DBS electrode implantation. Macrostimulation via the final DBS electrode is then used primarily to establish the side effect profile for postoperative stimulation. Microelectrode recording is a helpful targeting adjunct that will continue to facilitate our understanding of basal ganglion physiological features
PMID: 11844235
ISSN: 0148-396x
CID: 33634

Epidural motor cortex stimulation with functional imaging guidance

Mogilner, A Y; Rezai, A R
Chronic epidural motor cortex stimulation (MCS) has been shown to have promise in the treatment of patients with refractory deafferentation pain. Precise placement of the electrode over the motor cortex region corresponding to the area of pain is essential for the success of this procedure. Whereas standard anatomical landmarks have been used in the past in conjunction with image guidance, the use of functional brain imaging can be beneficial in the precise surgical planning. The authors report the use of functional imaging-guided frameless stereotactic surgery for epidural MCS. Five patients underwent MCS in which functional imaging guidance was used. Prior to surgery, patients underwent magnetic resonance (MR) imaging with skin fiducial markers placed on standard anatomical reference prints, followed by magnetoencephalography (MEG) mapping of the sensory and motor cortices. In two patients, functional MR imaging was also performed using a motor task paradigm. The functional imaging data were integrated into a frameless stereotactic database by using a three-dimensional coregistration algorithm. Subsequently, a frameless stereotactic craniotomy was performed using the integrated anatomical and functional imaging data for surgical planning. Intraoperative somatosensory evoked potentials (SSEPs) and direct stimulation were used to confirm the target and final placement of the electrode. Direct stimulation and SSEPs performed intraoperatively confirmed the accuracy of the functional imaging data. Trial periods of stimulation successfully reduced pain in three of the five patients who then underwent permanent internal placement of the system. At a mean 6-month follow up, these patients reported an average reduction in pain of 55% on a visual analog scale. The integration of functional and anatomical imaging data allows for precise and efficient surgical planning and may reduce the time necessary for intraoperative physiological verification
PMID: 16519424
ISSN: 1092-0684
CID: 127151

Complications of deep brain stimulation surgery

Beric A; Kelly PJ; Rezai A; Sterio D; Mogilner A; Zonenshayn M; Kopell B
Although technological advances have reduced device-related complications, DBS surgery still carries a significant risk of transient and permanent complications. We report our experience in 86 patients and 149 DBS implants. Patients with Parkinson's disease, essential tremor and dystonia were treated. There were 8 perioperative, 8 postoperative, 9 hardware-related complications and 4 stimulation-induced side effects. Only 5 patients (6%) sustained some persistent neurological sequelae, however, 26 of the 86 patients undergoing 149 DBS implants in this series experienced some untoward event with the procedure. Although there were no fatalities or permanent severe disabilities encountered, it is important to extend the informed consent to include all potential complications
PMID: 12378060
ISSN: 1011-6125
CID: 33632

Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting [In Process Citation]

Zonenshayn M; Rezai AR; Mogilner AY; Beric A; Sterio D; Kelly PJ
OBJECTIVE: The subthalamic nucleus (STN) has recently become the surgical target of choice for the treatment of medically refractory idiopathic Parkinson's disease. A number of anatomic and physiological targeting methods have been used to localize the STN. We retrospectively reviewed the various anatomic targeting methods and compared them with the final physiological target in 15 patients who underwent simultaneous bilateral STN implantation of deep brain stimulators. METHODS: The x, y, and z coordinates of our localizing techniques were analyzed for 30 STN targets. Our final targets, as determined by single-cell microelectrode recording, were compared with the following: 1) targets selected on coronal magnetic resonance inversion recovery and T2-weighted imaging sequences, 2) the center of the STN on a digitized scaled Schaltenbrand-Wahren stereotactic atlas, 3) targeting based on a point 13 mm lateral, 4 mm posterior, and 5 mm inferior to the midcommissural point, and 4) a composite target based on the above methods. RESULTS: All anatomic methods yielded targets that were statistically significantly different (P < 0.001) from the final physiological targets. The average distance error between the final physiological targets and the magnetic resonance imaging-derived targets was 2.6 +/- 1.3 mm (mean +/- standard deviation), 1.7 +/- 1.1 mm for the atlas-based method, 1.5 +/- 0.8 mm for the indirect midcommissural method, and 1.3 +/- 1.1 mm for the composite method. Once the final microelectrode-refined target was determined on the first side, the final target for the contralateral side was 1.3 +/- 1.2 mm away from its mirror image. CONCLUSION: Although all anatomic targeting methods provide accurate STN localization, a combination of the three methods offers the best correlation with the final physiological target. In our experience, direct magnetic resonance targeting was the least accurate method
PMID: 10942001
ISSN: 0148-396x
CID: 11550

Neurostimulation and functional brain imaging

Zonenshayn M; Mogilner AY; Rezai AR
Recent advancements in functional neuroimaging have furthered our understanding of the normal and pathological brain. These non-invasive imaging modalities have allowed us to study the human brain in vivo. Concurrently, the revival of neurostimulation in the treatment of pain, movement disorders, and epilepsy has allowed the synergistic combination of these two technologies. Several studies focusing on the use of functional imaging in patients with implanted neurostimulation devices are reviewed. The anticipated roles of these two disciplines are discussed
PMID: 10769827
ISSN: 0161-6412
CID: 11745

Differences in MEG patterns produced by central and peripheral pain [Meeting Abstract]

Schulman J; Zonenshayn M; Ramirez RR; Mogilner AY; Rezai AR; Kronberg E; Ribary U; Mitra PP; Jeanmonod D; Llinas R
ORIGINAL:0004428
ISSN: 1053-8119
CID: 33829

Nutrition in the patient with severe head injury

Chapter by: Mogilner A; Golfinos JG
in: Head injury by Cooper PR [Eds]
New York : McGraw-Hill Health Professions, 2000
pp. 517-524
ISBN: 0838536875
CID: 3573

Multi-stage epilepsy surgery in children with extratemporal epilepsy due to cortical dysplasia [Meeting Abstract]

Weiner, HL; Mogilner, A; Doyle, WK; Pacia, SV; Wisoff, JH; Devinsky, O
ISI:000082947600502
ISSN: 0013-9580
CID: 53857