Try a new search

Format these results:

Searched for:

in-biosketch:true

person:wangj28

Total Results:

88


AMPAkines Target the Nucleus Accumbens to Relieve Postoperative Pain

Su, Chen; Lin, Hau Yeuh; Yang, Runtao; Xu, Duo; Lee, Michelle; Pawlak, Natalie; Norcini, Monica; Sideris, Alexandra; Recio-Pinto, Esperanza; Huang, Dong; Wang, Jing
BACKGROUND: AMPAkines augment the function of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the brain to increase excitatory outputs. These drugs are known to relieve persistent pain. However, their role in acute pain is unknown. Furthermore, a specific molecular and anatomic target for these novel analgesics remains elusive. METHODS: The authors studied the analgesic role of an AMPAkine, CX546, in a rat paw incision (PI) model of acute postoperative pain. The authors measured the effect of AMPAkines on sensory and depressive symptoms of pain using mechanical hypersensitivity and forced swim tests. The authors asked whether AMPA receptors in the nucleus accumbens (NAc), a key node in the brain's reward and pain circuitry, can be a target for AMPAkine analgesia. RESULTS: Systemic administration of CX546 (n = 13), compared with control (n = 13), reduced mechanical hypersensitivity (50% withdrawal threshold of 6.05 +/- 1.30 g [mean +/- SEM] vs. 0.62 +/- 0.13 g), and it reduced depressive features of pain by decreasing immobility on the forced swim test in PI-treated rats (89.0 +/- 15.5 vs. 156.7 +/- 18.5 s). Meanwhile, CX546 delivered locally into the NAc provided pain-relieving effects in both PI (50% withdrawal threshold of 6.81 +/- 1.91 vs. 0.50 +/- 0.03 g; control, n = 6; CX546, n = 8) and persistent postoperative pain (spared nerve injury) models (50% withdrawal threshold of 3.85 +/- 1.23 vs. 0.45 +/- 0.00 g; control, n = 7; CX546, n = 11). Blocking AMPA receptors in the NAc with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione inhibited these pain-relieving effects (50% withdrawal threshold of 7.18 +/- 1.52 vs. 1.59 +/- 0.66 g; n = 8 for PI groups; 10.70 +/- 3.45 vs. 1.39 +/- 0.88 g; n = 4 for spared nerve injury groups). CONCLUSIONS: AMPAkines relieve postoperative pain by acting through AMPA receptors in the NAc.
PMCID:5226421
PMID: 27627816
ISSN: 1528-1175
CID: 2247002

Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer

Zhang, Hui; Liu, Tao; Zhang, Zhen; Payne, Samuel H; Zhang, Bai; McDermott, Jason E; Zhou, Jian-Ying; Petyuk, Vladislav A; Chen, Li; Ray, Debjit; Sun, Shisheng; Yang, Feng; Chen, Lijun; Wang, Jing; Shah, Punit; Cha, Seong Won; Aiyetan, Paul; Woo, Sunghee; Tian, Yuan; Gritsenko, Marina A; Clauss, Therese R; Choi, Caitlin; Monroe, Matthew E; Thomas, Stefani; Nie, Song; Wu, Chaochao; Moore, Ronald J; Yu, Kun-Hsing; Tabb, David L; Fenyo, David; Bafna, Vineet; Wang, Yue; Rodriguez, Henry; Boja, Emily S; Hiltke, Tara; Rivers, Robert C; Sokoll, Lori; Zhu, Heng; Shih, Ie-Ming; Cope, Leslie; Pandey, Akhilesh; Zhang, Bing; Snyder, Michael P; Levine, Douglas A; Smith, Richard D; Chan, Daniel W; Rodland, Karin D
To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC.
PMCID:4967013
PMID: 27372738
ISSN: 1097-4172
CID: 2179552

Persistent neuropathic pain increases synaptic GluA1 subunit levels in core and shell subregions of the nucleus accumbens

Xu, Duo; Su, Chen; Lin, Hau-Yueh; Manders, Toby; Wang, Jing
The nucleus accumbens (NAc) is a key component of the brain reward system, and it is composed of core and shell subregions. Glutamate transmission through AMPA-type receptors in both core and shell of the NAc has been shown to regulate reward- and aversion-type behaviors. Previous studies have additionally demonstrated a role for AMPA receptor signaling in the NAc in chronic pain states. Here, we show that persistent neuropathic pain, modeled by spared nerve injury (SNI), selectively increases the numbers of GluA1 subunits of AMPA receptors at the synapse of both core and shell subregions. Such increases are not observed, however, for the GluA2 subunits. Furthermore, we find that phosphorylation at Ser845-GluA1 is increased by SNI at both core and shell subregions. These results demonstrate that persistent neuropathic pain increases AMPA receptor delivery to the synapse in both NAc core and shell, implying a role for AMPA receptor signaling in these regions in pain states.
PMCID:4679417
PMID: 26477778
ISSN: 1872-7972
CID: 1810362

Persistent pain alters AMPA receptor subunit levels in the nucleus accumbens

Su, Chen; D'amour, James; Lee, Michelle; Lin, Hau-Yeuh; Manders, Toby; Xu, Duo; Eberle, Sarah E; Goffer, Yossef; Zou, Anthony H; Rahman, Maisha; Ziff, Edward; Froemke, Robert C; Huang, Dong; Wang, Jing
BACKGROUND: A variety of pain conditions have been found to be associated with depressed mood in clinical studies. Depression-like behaviors have also been described in animal models of persistent or chronic pain. In rodent chronic neuropathic pain models, elevated levels of GluA1 subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the nucleus accumbens (NAc) have been found to inhibit depressive symptoms. However, the effect of reversible post-surgical pain or inflammatory pain on affective behaviors such as depression has not been well characterized in animal models. Neither is it known what time frame is required to elicit AMPA receptor subunit changes in the NAc in various pain conditions. RESULTS: In this study, we compared behavioral and biochemical changes in three pain models: the paw incision (PI) model for post-incisional pain, the Complete Freund's Adjuvant (CFA) model for persistent but reversible inflammatory pain, and the spared nerve injury (SNI) model for chronic postoperative neuropathic pain. In all three models, rats developed depressive symptoms that were concurrent with the presentation of sensory allodynia. GluA1 levels at the synapses of the NAc, however, differed in these three models. The level of GluA1 subunits of AMPA-type receptors at NAc synapses was not altered in the PI model. GluA1 levels were elevated in the CFA model after a period (7 d) of persistent pain, leading to the formation of GluA2-lacking AMPA receptors. As pain symptoms began to resolve, however, GluA1 levels returned to baseline. Meanwhile, in the SNI model, in which pain persisted beyond 14 days, GluA1 levels began to rise after pain became persistent and remained elevated. In addition, we found that blocking GluA2-lacking AMPA receptors in the NAc further decreased the depressive symptoms only in persistent pain models. CONCLUSION: Our study shows that while both short-term and persistent pain can trigger depression-like behaviors, GluA1 upregulation in the NAc likely represents a unique adaptive response to minimize depressive symptoms in persistent pain states.
PMCID:4531890
PMID: 26260133
ISSN: 1756-6606
CID: 1720982

Activation of corticostriatal circuitry relieves chronic neuropathic pain

Lee, Michelle; Manders, Toby R; Eberle, Sarah E; Su, Chen; D'amour, James; Yang, Runtao; Lin, Hau Yueh; Deisseroth, Karl; Froemke, Robert C; Wang, Jing
Neural circuits that determine the perception and modulation of pain remain poorly understood. The prefrontal cortex (PFC) provides top-down control of sensory and affective processes. While animal and human imaging studies have shown that the PFC is involved in pain regulation, its exact role in pain states remains incompletely understood. A key output target for the PFC is the nucleus accumbens (NAc), an important component of the reward circuitry. Interestingly, recent human imaging studies suggest that the projection from the PFC to the NAc is altered in chronic pain. The function of this corticostriatal projection in pain states, however, is not known. Here we show that optogenetic activation of the PFC produces strong antinociceptive effects in a rat model (spared nerve injury model) of persistent neuropathic pain. PFC activation also reduces the affective symptoms of pain. Furthermore, we show that this pain-relieving function of the PFC is likely mediated by projections to the NAc. Thus, our results support a novel role for corticostriatal circuitry in pain regulation.
PMCID:4380998
PMID: 25834050
ISSN: 1529-2401
CID: 1520992

Neuroplasticity underlying the comorbidity of pain and depression

Doan, Lisa; Manders, Toby; Wang, Jing
Acute pain induces depressed mood, and chronic pain is known to cause depression. Depression, meanwhile, can also adversely affect pain behaviors ranging from symptomology to treatment response. Pain and depression independently induce long-term plasticity in the central nervous system (CNS). Comorbid conditions, however, have distinct patterns of neural activation. We performed a review of the changes in neural circuitry and molecular signaling pathways that may underlie this complex relationship between pain and depression. We also discussed some of the current and future therapies that are based on this understanding of the CNS plasticity that occurs with pain and depression.
PMCID:4355564
PMID: 25810926
ISSN: 1687-5443
CID: 1520832

AMPAkines Have Novel Analgesic Properties in Rat Models of Persistent Neuropathic and Inflammatory Pain

Le, Alexander M; Lee, Michelle; Su, Chen; Zou, Anthony; Wang, Jing
BACKGROUND: Novel analgesics that do not suppress the respiratory drive are urgently needed. Glutamate signaling through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors plays important roles in central pain circuits. AMPAkines augment AMPA receptor function and have been shown to stimulate the respiratory drive to oppose opioid-induced hypoventilation. However, their role in chronic pain states remains unknown. METHODS: The authors studied AMPAkines (CX546 and CX516) in rat spared nerve injury (SNI) model of neuropathic pain and Complete Freund's Adjuvant (CFA) model of inflammatory pain. They measured the effect of AMPAkines on mechanical and cold allodynia. They also evaluated their effect on depressive symptoms of pain using the forced swim test, as time of immobility on this test has been used as a measure for behavioral despair, a feature of depression. RESULTS: The authors found that CX546, compared with dimethyl sulfoxide (DMSO) control, reduced both mechanical and sensory allodynia in SNI (DMSO group, n = 9; CX546 group, n = 11) and CFA models (both DMSO and CX546 groups, n = 9). They found that CX546, compared with control, also reduced depressive symptoms of pain by decreasing immobility on the forced swim test in both SNI (both DMSO and CX546 groups, n = 8) and CFA models (both DMSO and CX546 groups, n = 10). Finally, they found that CX516, compared with control, also reduced mechanical and cold allodynia in the SNI model (both DMSO and CX516 groups, n = 10). CONCLUSIONS: AMPAkines alleviate pain hypersensitivity as well as depression-like behavior associated with long-lasting nerve injury and inflammatory insult.
PMCID:4206834
PMID: 25338127
ISSN: 0003-3022
CID: 1315532

Deriving adaptive MRF coefficients from previous normal-dose CT scan for low-dose image reconstruction via penalized weighted least-squares minimization

Zhang, Hao; Han, Hao; Wang, Jing; Ma, Jianhua; Liu, Yan; Moore, William; Liang, Zhengrong
PURPOSE: Repeated computed tomography (CT) scans are required for some clinical applications such as image-guided interventions. To optimize radiation dose utility, a normal-dose scan is often first performed to set up reference, followed by a series of low-dose scans for intervention. One common strategy to achieve the low-dose scan is to lower the x-ray tube current and exposure time (mAs) or tube voltage (kVp) setting in the scanning protocol, but the resulted image quality by the conventional filtered back-projection (FBP) method may be severely degraded due to the excessive noise. Penalized weighted least-squares (PWLS) image reconstruction has shown the potential to significantly improve the image quality from low-mAs acquisitions, where the penalty plays an important role. In this work, the authors' explore an adaptive Markov random field (MRF)-based penalty term by utilizing previous normal-dose scan to improve the subsequent low-dose scans image reconstruction. METHODS: In this work, the authors employ the widely-used quadratic-form MRF as the penalty model and explore a novel idea of using the previous normal-dose scan to obtain the MRF coefficients for adaptive reconstruction of the low-dose images. In the coefficients determination, the authors further explore another novel idea of using the normal-dose scan to obtain a scale map, which describes an optimal neighborhood for the coefficients determination such that a local uniform region has a small spread of frequency spectrum and, therefore, a small MRF window, and vice versa. The proposed penalty term is incorporated into the PWLS image reconstruction framework, and the low-dose images are reconstructed via the PWLS minimization. RESULTS: The presented adaptive MRF based PWLS algorithm was validated by physical phantom and patient data. The experimental results demonstrated that the presented algorithm is superior to the PWLS reconstruction using the conventional Gaussian MRF penalty or the edge-preserving Huber penalty and the conventional FBP method, in terms of image noise reduction and edge/detail/contrast preservation. CONCLUSIONS: This study demonstrated the feasibility and efficacy of the proposed scheme in utilizing previous normal-dose CT scan to improve the subsequent low-dose scans.
PMCID:3971828
PMID: 24694147
ISSN: 0094-2405
CID: 1864792

Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like behaviors in the chronic neuropathic pain state

Goffer, Yossef; Xu, Duo; Eberle, Sarah E; D'amour, James; Lee, Michelle; Tukey, David; Froemke, Robert C; Ziff, Edward B; Wang, Jing
Depression is a salient emotional feature of chronic pain. Depression alters the pain threshold and impairs functional recovery. To date, however, there has been limited understanding of synaptic or circuit mechanisms that regulate depression in the pain state. Here, we demonstrate that depression-like behaviors are induced in a rat model of chronic neuropathic pain. Using this model, we show that chronic pain selectively increases the level of GluA1 subunits of AMPA-type glutamate receptors at the synapses of the nucleus accumbens (NAc), a key component of the brain reward system. We find, in addition, that this increase in GluA1 levels leads to the formation of calcium-permeable AMPA receptors (CPARs). Surprisingly, pharmacologic blockade of these CPARs in the NAc increases depression-like behaviors associated with pain. Consistent with these findings, an AMPA receptor potentiator delivered into the NAc decreases pain-induced depression. These results show that transmission through CPARs in the NAc represents a novel molecular mechanism modulating the depressive symptoms of pain, and thus CPARs may be a promising therapeutic target for the treatment of pain-induced depression. More generally, these findings highlight the role of central glutamate signaling in pain states and define the brain reward system as an important region for the regulation of depressive symptoms of pain.
PMCID:3841460
PMID: 24285907
ISSN: 0270-6474
CID: 666292

Differential effects of natural rewards and pain on vesicular glutamate transporter expression in the nucleus accumbens

Tukey, David S; Lee, Michelle; Xu, Duo; Eberle, Sarah E; Goffer, Yossef; Manders, Toby R; Ziff, Edward B; Wang, Jing
BACKGROUND: Pain and natural rewards such as food elicit different behavioral effects. Both pain and rewards, however, have been shown to alter synaptic activities in the nucleus accumbens (NAc), a key component of the brain reward system. Mechanisms by which external stimuli regulate plasticity at NAc synapses are largely unexplored. Medium spiny neurons (MSNs) from the NAc receive excitatory glutamatergic inputs and modulatory dopaminergic and cholinergic inputs from a variety of cortical and subcortical structures. Glutamate inputs to the NAc arise primarily from prefrontal cortex, thalamus, amygdala, and hippocampus, and different glutamate projections provide distinct synaptic and ultimately behavioral functions. The family of vesicular glutamate transporters (VGLUTs 1-3) plays a key role in the uploading of glutamate into synaptic vesicles. VGLUT1-3 isoforms have distinct expression patterns in the brain, but the effects of external stimuli on their expression patterns have not been studied. RESULTS: In this study, we use a sucrose self-administration paradigm for natural rewards, and spared nerve injury (SNI) model for chronic pain. We examine the levels of VGLUTs (1-3) in synaptoneurosomes of the NAc in these two behavioral models. We find that chronic pain leads to a decrease of VGLUT1, likely reflecting decreased projections from the cortex. Pain also decreases VGLUT3 levels, likely representing a decrease in projections from GABAergic, serotonergic, and/or cholinergic interneurons. In contrast, chronic consumption of sucrose increases VGLUT3 in the NAc, possibly reflecting an increase from these interneuron projections. CONCLUSION: Our study shows that natural rewards and pain have distinct effects on the VGLUT expression pattern in the NAc, indicating that glutamate inputs to the NAc are differentially modulated by rewards and pain.
PMCID:3710235
PMID: 23835161
ISSN: 1756-6606
CID: 438882