Try a new search

Format these results:

Searched for:

in-biosketch:true

person:wkd1

Total Results:

188


The value of diagnostic bilateral intracranial EEG in treatment-resistant focal epilepsy

Hill, Travis C; Rubin, Benjamin A; Tyagi, Vineet; Theobald, Jason; Silverberg, Alyson; Miceli, Mary; Dugan, Patricia; Carlson, Chad; Doyle, Werner K
OBJECTIVES: We assessed the efficacy and risks of diagnostic bilateral intracranial EEG (bICEEG) in treatment-resistant epilepsy (TRE) patients with poorly lateralized epileptogenic zone (EZ) on non-invasive studies as reflected by progress to resection, Engel outcome and complication rate. METHODS: This is a retrospective chart review of 199 patients with TRE who had diagnostic bICEEG at New York University Medical Center between 1994 and 2013. Study endpoints were progress to resection, surgical outcome and perioperative complications. Univariate analysis was performed with ANOVA, t-test or Fischer's Exact test; multivariable analysis was performed using discriminant function analysis. RESULTS: bICEEG lateralized the EZ and the patient had resection in 60.3% of cases. The number of depth electrodes used was positively correlated with resection, and surgical complications during bICEEG negatively correlated. Vagal nerve stimulators were implanted in 58.2% of patients who did not undergo resection and 20.7% of those who did. Among the 87 patients who progressed to resection and had more than 1-year follow-up, 47.1% were seizure free compared with 12.7% of the 55 who did not. Male sex correlated with good postoperative seizure control. The most common complication was infection requiring debridement, occurring in 3.1% of admissions (9 of 290). CONCLUSION: At our center, 60% of patients undergoing bICEEG progress to resection and 57% of these had more than 90% reduction in seizures. We conclude that bICEEG allows the benefits of epilepsy surgery to be extended to patients with poorly lateralized and localized TRE.
PMID: 28185968
ISSN: 1878-8769
CID: 2437572

Parahippocampal and Entorhinal Resection Extent Predicts Verbal Memory Decline in an Epilepsy Surgery Cohort

Liu, Anli; Thesen, Thomas; Barr, William; Morrison, Chris; Dugan, Patricia; Wang, Xiuyuan; Meager, Michael; Doyle, Werner; Kuzniecky, Ruben; Devinsky, Orrin; Blackmon, Karen
The differential contribution of medial-temporal lobe regions to verbal declarative memory is debated within the neuroscience, neuropsychology, and cognitive psychology communities. We evaluate whether the extent of surgical resection within medial-temporal regions predicts longitudinal verbal learning and memory outcomes. This single-center retrospective observational study involved patients with refractory temporal lobe epilepsy undergoing unilateral anterior temporal lobe resection from 2007 to 2015. Thirty-two participants with Engel Classes 1 and 2 outcomes were included (14 left, 18 right) and followed for a mean of 2.3 years after surgery (+/-1.5 years). Participants had baseline and postsurgical neuropsychological testing and high-resolution T1-weighted MRI scans. Postsurgical lesions were manually traced and coregistered to presurgical scans to precisely quantify resection extent of medial-temporal regions. Verbal learning and memory change scores were regressed on hippocampal, entorhinal, and parahippocampal resection volume after accounting for baseline performance. Overall, there were no significant differences in learning and memory change between patients who received left and right anterior temporal lobe resection. After controlling for baseline performance, the extent of left parahippocampal resection accounted for 27% (p = .021) of the variance in verbal short delay free recall. The extent of left entorhinal resection accounted for 37% (p = .004) of the variance in verbal short delay free recall. Our findings highlight the critical role that the left parahippocampal and entorhinal regions play in recall for verbal material.
PMID: 27991184
ISSN: 1530-8898
CID: 2465052

Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C
Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimate electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r=0.89) and depth (r=0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials.
PMCID:5370189
PMID: 28169833
ISSN: 2050-084x
CID: 2437392

Manipulating stored phonological input during verbal working memory

Cogan, Gregory B; Iyer, Asha; Melloni, Lucia; Thesen, Thomas; Friedman, Daniel; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan
Verbal working memory (vWM) involves storing and manipulating information in phonological sensory input. An influential theory of vWM proposes that manipulation is carried out by a central executive while storage is performed by two interacting systems: a phonological input buffer that captures sound-based information and an articulatory rehearsal system that controls speech motor output. Whether, when and how neural activity in the brain encodes these components remains unknown. Here we read out the contents of vWM from neural activity in human subjects as they manipulated stored speech sounds. As predicted, we identified storage systems that contained both phonological sensory and articulatory motor representations. Unexpectedly, however, we found that manipulation did not involve a single central executive but rather involved two systems with distinct contributions to successful manipulation. We propose, therefore, that multiple subsystems comprise the central executive needed to manipulate stored phonological input for articulatory motor output in vWM.
PMCID:5272846
PMID: 27941789
ISSN: 1546-1726
CID: 2363302

Perceptual confidence neglects decision-incongruent evidence in the brain

Peters, Megan A K; Thesen, Thomas; Ko, Yoshiaki D; Maniscalco, Brian; Carlson, Chad; Davidson, Matt; Doyle, Werner; Kuzniecky, Ruben; Devinsky, Orrin; Halgren, Eric; Lau, Hakwan
PMCID:5675133
PMID: 29130070
ISSN: 2397-3374
CID: 2784702

GPR133 PROMOTES HYPOXIA-DRIVEN TUMOR PROGRESSION IN GLIOBLASTOMA [Meeting Abstract]

Frenster, Joshua; Bayin, NSumru; Kane, Josh Robert; Rubenstein, Jordan; Modrek, Aram; Baitamal, Rabaa; Dolgalev, Igor; Rudzenski, Katie; Snuderl, Matija; Golfinos, John; Doyle, Werner; Pacione, Donato; Chi, Andrew; Heguy, Adriana; Shohdy, Nadim; MacNeil, Douglas; Huang, Xinyan; Parker, Erik; Zagzag, David; Placantonakis, Dimitris
ISI:000398604104099
ISSN: 1523-5866
CID: 2545192

Organic electronics for high-resolution electrocorticography of the human brain

Khodagholy, Dion; Gelinas, Jennifer N; Zhao, Zifang; Yeh, Malcolm; Long, Michael; Greenlee, Jeremy D; Doyle, Werner; Devinsky, Orrin; Buzsaki, Gyorgy
Localizing neuronal patterns that generate pathological brain signals may assist with tissue resection and intervention strategies in patients with neurological diseases. Precise localization requires high spatiotemporal recording from populations of neurons while minimizing invasiveness and adverse events. We describe a large-scale, high-density, organic material-based, conformable neural interface device ("NeuroGrid") capable of simultaneously recording local field potentials (LFPs) and action potentials from the cortical surface. We demonstrate the feasibility and safety of intraoperative recording with NeuroGrids in anesthetized and awake subjects. Highly localized and propagating physiological and pathological LFP patterns were recorded, and correlated neural firing provided evidence about their local generation. Application of NeuroGrids to brain disorders, such as epilepsy, may improve diagnostic precision and therapeutic outcomes while reducing complications associated with invasive electrodes conventionally used to acquire high-resolution and spiking data.
PMCID:5569954
PMID: 28861464
ISSN: 2375-2548
CID: 2678832

GPR133 (ADGRD1), an adhesion G-protein-coupled receptor, is necessary for glioblastoma growth

Bayin, N S; Frenster, J D; Kane, J R; Rubenstein, J; Modrek, A S; Baitalmal, R; Dolgalev, I; Rudzenski, K; Scarabottolo, L; Crespi, D; Redaelli, L; Snuderl, M; Golfinos, J G; Doyle, W; Pacione, D; Parker, E C; Chi, A S; Heguy, A; MacNeil, D J; Shohdy, N; Zagzag, D; Placantonakis, D G
Glioblastoma (GBM) is a deadly primary brain malignancy with extensive intratumoral hypoxia. Hypoxic regions of GBM contain stem-like cells and are associated with tumor growth and angiogenesis. The molecular mechanisms that regulate tumor growth in hypoxic conditions are incompletely understood. Here, we use primary human tumor biospecimens and cultures to identify GPR133 (ADGRD1), an orphan member of the adhesion family of G-protein-coupled receptors, as a critical regulator of the response to hypoxia and tumor growth in GBM. GPR133 is selectively expressed in CD133+ GBM stem cells (GSCs) and within the hypoxic areas of PPN in human biospecimens. GPR133 mRNA is transcriptionally upregulated by hypoxia in hypoxia-inducible factor 1alpha (Hif1alpha)-dependent manner. Genetic inhibition of GPR133 with short hairpin RNA reduces the prevalence of CD133+ GSCs, tumor cell proliferation and tumorsphere formation in vitro. Forskolin rescues the GPR133 knockdown phenotype, suggesting that GPR133 signaling is mediated by cAMP. Implantation of GBM cells with short hairpin RNA-mediated knockdown of GPR133 in the mouse brain markedly reduces tumor xenograft formation and increases host survival. Analysis of the TCGA data shows that GPR133 expression levels are inversely correlated with patient survival. These findings indicate that GPR133 is an important mediator of the hypoxic response in GBM and has significant protumorigenic functions. We propose that GPR133 represents a novel molecular target in GBM and possibly other malignancies where hypoxia is fundamental to pathogenesis.
PMCID:5117849
PMID: 27775701
ISSN: 2157-9024
CID: 2281812

Human parietal cortex lesions impact the precision of spatial working memory

Mackey, Wayne E; Devinsky, Orrin; Doyle, Werner K; Golfinos, John G; Curtis, Clayton E
The neural mechanisms that support working memory (WM) depend on persistent neural activity. Within topographically organized maps of space in dorsal parietal cortex, spatially selective neural activity persists during WM for location. However, to date the necessity of these topographic subregions of human parietal cortex for WM remain unknown. To test the causal relationship of these areas to WM, we compared the performance of patients with lesions to topographically organized parietal cortex to controls on a memory-guided saccade (MGS) task as well as a visually-guided saccade (VGS) task. The MGS task allowed us to measure WM precision continuously with great sensitivity, while the VGS task allowed us to control for any deficits in general spatial or visuomotor processing. Compared to controls, patients generated memory-guided saccades that were significantly slower and less accurate, while visually-guided saccades were unaffected. These results provide key missing evidence for the causal role of topographic areas in human parietal cortex for WM, as well as the neural mechanisms supporting WM.
PMCID:5009209
PMID: 27306678
ISSN: 1522-1598
CID: 2145202

Prefrontal lobe structural integrity and trail making test, part B: converging findings from surface-based cortical thickness and voxel-based lesion symptom analyses

Miskin, Nityanand; Thesen, Thomas; Barr, William B; Butler, Tracy; Wang, Xiuyuan; Dugan, Patricia; Kuzniecky, Ruben; Doyle, Werner; Devinsky, Orrin; Blackmon, Karen
Surface-based cortical thickness (CT) analyses are increasingly being used to investigate variations in brain morphology across the spectrum of brain health, from neurotypical to neuropathological. An outstanding question is whether individual differences in cortical morphology, such as regionally increased or decreased CT, are associated with domain-specific performance deficits in healthy adults. Since CT studies are correlational, they cannot establish causality between brain morphology and cognitive performance. A direct comparison with classic lesion methods is needed to determine whether the regional specificity of CT-cognition correlations is similar to that observed in patients with brain lesions. We address this question by comparing the neuroanatomical overlap of effects when 1) whole brain vertex-wise CT is tested as a correlate of performance variability on a commonly used neuropsychological test of executive function, Trailmaking Test Part B (TMT-B), in healthy adults and 2) voxel-based lesion-symptom mapping (VBLSM) is used to map lesion location to performance decrements on the same task in patients with frontal lobe lesions. We found that reduced performance on the TMT-B was associated with increased CT in bilateral prefrontal regions in healthy adults and that results spatially overlapped in the left dorsomedial prefrontal cortex with findings from the VBLSM analysis in patients with frontal brain lesions. Findings indicate that variations in the structural integrity of the left dorsomedial prefrontal lobe, ranging from individual CT differences in healthy adults to structural lesions in patients with neurological disorders, are associated with poor performance on the TMT-B. These converging results suggest that the left dorsomedial prefrontal region houses a critical region for the complex processing demands of TMT-B, which include visuomotor tracking, sequencing, and cognitive flexibility.
PMCID:5786430
PMID: 26399235
ISSN: 1931-7565
CID: 1786862