Try a new search

Format these results:

Searched for:

in-biosketch:true

person:kangu01

Total Results:

176


Plasma-based circulating MicroRNA biomarkers for Parkinson's disease

Khoo, Sok Kean; Petillo, David; Kang, Un Jung; Resau, James H; Berryhill, Brian; Linder, Jan; Forsgren, Lars; Neuman, Leslie A; Tan, Aik Choon
BACKGROUND:The current "gold-standard" for Parkinson's disease (PD) diagnosis is based primarily on subjective clinical rating scales related with motor features. Molecular biomarkers that are objective and quantifiable remain attractive as clinical tools to detect PD prior to its motor onsets. OBJECTIVE:Here, we aimed to identify, develop, and validate plasma-based circulating microRNA (miRNAs) as biomarkers for PD. METHODS:Global miRNA expressions were acquired from a discovery set of 32 PD/32 controls using microarrays. k-Top Scoring Pairs (k-TSP) algorithm and significance analysis of microarrays (SAM) were applied to obtain comprehensive panels of PD-predictive biomarkers. TaqMan miRNA-specific real-time PCR assays were performed to validate the microarray data and to evaluate the biomarker performance using a new replication set of 42 PD/30 controls. Data was analyzed in a paired PD-control fashion. The validation set was composed of 30 PD, 5 progressive supranuclear palsy, and 4 multiple system atrophy samples from a new clinical site. RESULTS:We identified 9 pairs of PD-predictive classifiers using k-TSP analysis and 13 most differentially-expressed miRNAs by SAM. A combination of both data sets produced a panel of PD-predictive biomarkers: k-TSP1 (miR-1826/miR-450b-3p), miR-626, and miR-505, and achieved the highest predictive power of 91% sensitivity, 100% specificity, 100% positive predicted value, and 88% negative predicted value in the replication set. However, low predictive values were shown in the validation set. CONCLUSIONS:This proof-of-concept study demonstrates the feasibility of using plasma-based circulating miRNAs as biomarkers for neurodegenerative disorders such as PD and shows the challenges of molecular biomarker research using samples from multiple clinical sites.
PMID: 23938262
ISSN: 1877-718x
CID: 3501652

The antioxidant Trolox helps recovery from the familial Parkinson's disease-specific mitochondrial deficits caused by PINK1- and DJ-1-deficiency in dopaminergic neuronal cells

Shim, Jung Hee; Yoon, Seung Hee; Kim, Kyung-Hee; Han, Ji Young; Ha, Ji-Young; Hyun, Dong Hoon; Paek, Sun Ha; Kang, Un Jung; Zhuang, Xiaoxi; Son, Jin H
The nature of mitochondrial dysfunction in dopaminergic neurons in familial Parkinson's disease (PD) is unknown. We characterized the pathophenotypes of dopaminergic neuronal cells that were deficient in PINK1 or DJ-1, genes with mutations linked to familial PD. Both PINK1- and DJ-1-deficient dopaminergic neurons had the increased production of ROS, severe mitochondrial structural damages and complex I deficits. A striking decrease in complex IV activity was also prominent by the PINK1-deficiency. The complex I deficits were relatively PD-specific and were significantly improved by an antioxidant Trolox. These data suggest that mitochondrial deficits are severe in dopaminergic neurons in familial PD and antioxidant-mediated functional recovery is feasible.
PMID: 21664494
ISSN: 1872-8278
CID: 3501562

Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression

Shi, Min; Bradner, Joshua; Hancock, Aneeka M; Chung, Kathryn A; Quinn, Joseph F; Peskind, Elaine R; Galasko, Douglas; Jankovic, Joseph; Zabetian, Cyrus P; Kim, Hojoong M; Leverenz, James B; Montine, Thomas J; Ginghina, Carmen; Kang, Un Jung; Cain, Kevin C; Wang, Yu; Aasly, Jan; Goldstein, David; Zhang, Jing
OBJECTIVE:There is a clear need to develop biomarkers for Parkinson disease (PD) diagnosis, differential diagnosis of Parkinsonian disorders, and monitoring disease progression. We and others have demonstrated that a decrease in DJ-1 and/or α-synuclein in the cerebrospinal fluid (CSF) is a potential index for Parkinson disease diagnosis, but not for PD severity. METHODS:Using highly sensitive and quantitative Luminex assays, we measured total tau, phosphorylated tau, amyloid beta peptide 1-42 (Aβ(1-42)), Flt3 ligand, and fractalkine levels in CSF in a large cohort of PD patients at different stages as well as healthy and diseased controls. The utility of these 5 markers was evaluated for disease diagnosis and severity/progression correlation alone, as well as in combination with DJ-1 and α-synuclein. The major results were further validated in an independent cohort of cross-sectional PD patients as well as in PD cases with CSF samples collected longitudinally. RESULTS:The results demonstrated that combinations of these biomarkers could differentiate PD patients not only from normal controls but also from patients with Alzheimer disease (AD) and multiple system atrophy. Particularly, with CSF Flt3 ligand, PD could be clearly differentiated from multiple system atrophy, a disease that overlaps with PD clinically, with excellent sensitivity (99%) and specificity (95%). In addition, we identified CSF fractalkine/Aβ(1-42) that positively correlated with PD severity in cross-sectional samples as well as with PD progression in longitudinal samples. INTERPRETATION/CONCLUSIONS:We have demonstrated that this panel of 7 CSF proteins could aid in Parkinson disease diagnosis, differential diagnosis, and correlation with disease severity and progression.
PMID: 21400565
ISSN: 1531-8249
CID: 3501552

Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice

Ding, Yunmin; Won, Lisa; Britt, Jonathan P; Lim, Sean Austin O; McGehee, Daniel S; Kang, Un Jung
Treatment of Parkinson disease (PD) with L-3,4-dihydroxyphenylalanine (L-DOPA) dramatically relieves associated motor deficits, but L-DOPA-induced dyskinesias (LID) limit the therapeutic benefit over time. Previous investigations have noted changes in striatal medium spiny neurons, including abnormal activation of extracellular signal-regulated kinase1/2 (ERK). Using two PD models, the traditional 6-hydroxydopamine toxic lesion and a genetic model with nigrostriatal dopaminergic deficits, we found that acute dopamine challenge induces ERK activation in medium spiny neurons in denervated striatum. After repeated L-DOPA treatment, however, ERK activation diminishes in medium spiny neurons and increases in striatal cholinergic interneurons. ERK activation leads to enhanced basal firing rate and stronger excitatory responses to dopamine in striatal cholinergic neurons. Pharmacological blockers of ERK activation inhibit L-DOPA-induced changes in ERK phosphorylation, neuronal excitability, and the behavioral manifestation of LID. In addition, a muscarinic receptor antagonist reduces LID. These data indicate that increased dopamine sensitivity of striatal cholinergic neurons contributes to the expression of LID, which suggests novel therapeutic targets for LID.
PMID: 21187382
ISSN: 1091-6490
CID: 3501542

Transcription factor AP-2β regulates the neurotransmitter phenotype and maturation of chromaffin cells

Hong, Seok Jong; Huh, Yang Hoon; Leung, Amanda; Choi, Hyun Jin; Ding, Yunmin; Kang, Un Jung; Yoo, Seung Hyun; Buettner, Reinhard; Kim, Kwang-Soo
During development, sympathetic neurons and chromaffin cells originate from bipotential sympathoadrenal (SA) progenitors arising from neural crests (NC) in the trunk regions. Recently, we showed that AP-2β, a member of the AP2 family, plays a critical role in the development of sympathetic neurons and locus coeruleus and their norepinephrine (NE) neurotransmitter phenotype. In the present study, we investigated the potential role of AP-2β in the development of NC-derived neuroendocrine chromaffin cells of the adrenal medulla and the epinephrine (EPI) phenotype determination. In support of its role in chromaffin cell development, AP-2β is prominently expressed in both embryonic and adult adrenal medulla. In adrenal chromaffin cells of the AP-2β(-/-) mouse, the expression levels of catecholamine biosynthesizing enzymes, dopamine β-hydroxylase (DBH) and phenylethanolamine-N-methyl-transferase (PNMT), as well as the SA-specific transcription factor, Phox2b, are significantly reduced compared to wild type. In addition, ultrastructural analysis demonstrated that the formation of large secretory vesicles, a hallmark of differentiated chromaffin cells, is defective in AP-2β(-/-) mice. Furthermore, the level of EPI content is largely diminished (>80%) in the adrenal gland of AP-2β(-/-) mice. Chromatin immunoprecipitation (ChIP) assays of rat adrenal gland showed that AP-2β binds to the upstream promoter of the PNMT gene in vivo; strongly suggesting that it is a direct target gene. Overall, our data suggest that AP-2β plays critical roles in the epinephrine phenotype and maturation of adrenal chromaffin cells.
PMID: 20875861
ISSN: 1095-9327
CID: 3501522

Structural determinants of PINK1 topology and dual subcellular distribution

Lin, William; Kang, Un Jung
BACKGROUND:PINK1 is a mitochondria-targeted kinase that constitutively localizes to both the mitochondria and the cytosol. The mechanism of how PINK1 achieves cytosolic localization following mitochondrial processing remains unknown. Understanding PINK1 subcellular localization will give us insights into PINK1 functions and how mutations in PINK1 lead to Parkinson's disease. We asked how the mitochondrial localization signal, the transmembrane domain, and the kinase domain participate in PINK1 localization. RESULTS:We confirmed that PINK1 mitochondrial targeting signal is responsible for mitochondrial localization. Once inside the mitochondria, we found that both PINK1 transmembrane and kinase domain are important for membrane tethering and cytosolic-facing topology. We also showed that PINK1 dual subcellular distribution requires both Hsp90 interaction with the kinase domain and the proteolysis at a cleavage site downstream of the transmembrane domain because removal of this cleavage site completely abolished cytosolic PINK1. In addition, the disruption of the Hsp90-PINK1 interaction increased mitochondrial PINK1 level. CONCLUSION/CONCLUSIONS:Together, we believe that once PINK1 enters the mitochondria, PINK1 adopts a tethered topology because the transmembrane domain and the kinase domain prevent PINK1 forward movement into the mitochondria. Subsequent proteolysis downstream of the transmembrane domain then releases PINK1 for retrograde movement while PINK1 kinase domain interacts with Hsp90 chaperone. The significance of this dual localization could mean that PINK1 has compartmental-specific functions.
PMID: 21092208
ISSN: 1471-2121
CID: 3501532

Dopamine-dependent motor learning: insight into levodopa's long-duration response

Beeler, Jeff A; Cao, Zhen Fang Huang; Kheirbek, Mazen A; Ding, Yunmin; Koranda, Jessica; Murakami, Mari; Kang, Un Jung; Zhuang, Xiaoxi
OBJECTIVE:Dopamine (DA) is critical for motor performance, motor learning, and corticostriatal plasticity. The relationship between motor performance and learning, and the role of DA in the mediation of them, however, remain unclear. METHODS:To examine this question, we took advantage of PITx3-deficient mice (aphakia mice), in which DA in the dorsal striatum is reduced by 90%. PITx3-deficient mice do not display obvious motor deficits in their home cage, but are impaired in motor tasks that require new motor skills. We used the accelerating rotarod as a motor learning task. RESULTS:We show that the deficiency in motor skill learning in PITx3(-/-) is dramatic and can be rescued with levodopa treatment. In addition, cessation of levodopa treatment after acquisition of the motor skill does not result in an immediate drop in performance. Instead, there is a gradual decline of performance that lasts for a few days, which is not related to levodopa pharmacokinetics. We show that this gradual decline is dependent on the retesting experience. INTERPRETATION/CONCLUSIONS:This observation resembles the long-duration response to levodopa therapy in its slow buildup of improvement after the initiation of therapy and gradual degradation. We hypothesize that motor learning may play a significant, underappreciated role in the symptomatology of Parkinson disease as well as in the therapeutic effects of levodopa. We suggest that the important, yet enigmatic long-duration response to chronic levodopa treatment is a manifestation of rescued motor learning.
PMID: 20437561
ISSN: 1531-8249
CID: 3501512

DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease

Hong, Zhen; Shi, Min; Chung, Kathryn A; Quinn, Joseph F; Peskind, Elaine R; Galasko, Douglas; Jankovic, Joseph; Zabetian, Cyrus P; Leverenz, James B; Baird, Geoffrey; Montine, Thomas J; Hancock, Aneeka M; Hwang, Hyejin; Pan, Catherine; Bradner, Joshua; Kang, Un J; Jensen, Poul H; Zhang, Jing
Biomarkers are urgently needed for the diagnosis and monitoring of disease progression in Parkinson's disease. Both DJ-1 and alpha-synuclein, two proteins critically involved in Parkinson's disease pathogenesis, have been tested as disease biomarkers in several recent studies with inconsistent results. These have been largely due to variation in the protein species detected by different antibodies, limited numbers of patients in some studies, or inadequate control of several important variables. In this study, the nature of DJ-1 and alpha-synuclein in human cerebrospinal fluid was studied by a combination of western blotting, gel filtration and mass spectrometry. Sensitive and quantitative Luminex assays detecting most, if not all, species of DJ-1 and alpha-synuclein in human cerebrospinal fluid were established. Cerebrospinal fluid concentrations of DJ-1 and alpha-synuclein from 117 patients with Parkinson's disease, 132 healthy individuals and 50 patients with Alzheimer's disease were analysed using newly developed, highly sensitive Luminex technology while controlling for several major confounders. A total of 299 individuals and 389 samples were analysed. The results showed that cerebrospinal fluid DJ-1 and alpha-synuclein levels were dependent on age and influenced by the extent of blood contamination in cerebrospinal fluid. Both DJ-1 and alpha-synuclein levels were decreased in Parkinson's patients versus controls or Alzheimer's patients when blood contamination was controlled for. In the population aged > or = 65 years, when cut-off values of 40 and 0.5 ng/ml were chosen for DJ-1 and alpha-synuclein, respectively, the sensitivity and specificity for patients with Parkinson's disease versus controls were 90 and 70% for DJ-1, and 92 and 58% for alpha-synuclein. A combination of the two markers did not enhance the test performance. There was no association between DJ-1 or alpha-synuclein and the severity of Parkinson's disease. Taken together, this represents the largest scale study for DJ-1 or alpha-synuclein in human cerebrospinal fluid so far, while using newly established sensitive Luminex assays, with controls for multiple variables. We have demonstrated that total DJ-1 and alpha-synuclein in human cerebrospinal fluid are helpful diagnostic markers for Parkinson's disease, if variables such as blood contamination and age are taken into consideration.
PMID: 20157014
ISSN: 1460-2156
CID: 3501492

Biomarkers in neuropsychiatric diseases [Editorial]

Kang, Un Jung
PMID: 19464368
ISSN: 1095-953x
CID: 3501482

Consideration of gene therapy for paediatric neurotransmitter diseases

Rotstein, Michael; Kang, Un Jung
The paediatric neurotransmitter diseases (PNDs) are a group of inborn errors of metabolism characterized by abnormalities of neurotransmitter synthesis or metabolism. Although some children may react favourably to neurotransmitter augmentation treatment, optimal response is not universal and other modes of treatment should be sought. The genes involved in many of the currently known monoamine PNDs have been utilized in pre-clinical and in phase I clinical trials in Parkinson disease (PD) and the basic principles could be applied to the therapy of PNDs with some modifications regarding the targeting and distribution of vectors. However, issues that go beyond neurotransmitter replacement are important considerations in PD and even more so in PNDs. Understanding the pathophysiology of PNDs including abnormal development resulting from the neurotransmitter deficiency will be critical for rational therapeutic approaches. Better animal models of PNDs are necessary to test gene therapy before clinical trials can be attempted.
PMID: 19259783
ISSN: 1573-2665
CID: 3501472