Try a new search

Format these results:

Searched for:

in-biosketch:true

person:ceradd01

Total Results:

116


Skin graft vascularization involves precisely regulated regression and replacement of endothelial cells through both angiogenesis and vasculogenesis

Capla, Jennifer M; Ceradini, Daniel J; Tepper, Oren M; Callaghan, Matthew J; Bhatt, Kirit A; Galiano, Robert D; Levine, Jamie P; Gurtner, Geoffrey C
BACKGROUND: Long-term survival of a skin graft is dependent on eventual revascularization. The authors' aim in the present study was to determine whether skin graft vascularization occurs by (1) simple reconnection of vessels, (2) ingrowth of recipient vasculature, (3) outgrowth of donor-derived vessels, and/or (4) recruitment of bone marrow-derived endothelial progenitor cells. METHODS: Full-thickness skin grafts (1 x 1 cm) were transferred between wild-type FVB/N mice (n = 20) and transgenic tie2/lacZ mice (n = 20), where lacZ expression is controlled by the endothelial specific tie2 promoter, allowing differentiation of recipient and donor endothelial cells. The contribution of endothelial progenitor cells to skin graft neovascularization was determined using a bone marrow transplant model where tie2/lacZ bone marrow was transplanted into wild-type mice (n = 20). RESULTS: Vascular regression in the graft was observed at the periphery starting on day 3 and moving centrally through day 21, sparing graft vessels in the absolute center of the graft. At the same time, vascular ingrowth occurred from the wound bed to replace the regressing vessels. Furthermore, bone marrow-derived endothelial progenitor cells contributed to these new vessels starting as early as day 7. Surprisingly, the contribution of bone marrow-derived vessels to the overall process was approximately 15 to 20 percent of new endothelial cells. CONCLUSIONS: Replacement of the donor graft vasculature by endothelial and endothelial progenitor cells from the recipient along preexisting channels is the predominant mechanism for skin graft revascularization. This mechanism is likely similar for all nonvascularized free grafts and suggests novel strategies for optimizing the vascularization of tissue constructs engineered in vitro
PMID: 16525274
ISSN: 1529-4242
CID: 63744

Hyperglycemia-induced reactive oxygen species and impaired endothelial progenitor cell function

Callaghan, Matthew J; Ceradini, Daniel J; Gurtner, Geoffrey C
Vascular complications in diabetes are a significant source of human morbidity and mortality, affecting multiple organ systems and persisting despite tight glucose control. Many of these complications can be linked to impairments in vasculogenesis, the process by which circulating and bone marrow-derived endothelial progenitor cells (EPCs) contribute to new vessel formation. Recent evidence suggests that hyperglycemia alone, through the mitochondrial overproduction of reactive oxygen species (ROS), can induce changes in gene expression and cellular behavior in diabetes. In this review, we examine how hyperglycemia-induced overproduction of ROS could explain EPC impairments observed in diabetes. Experimentally, impairments in EPC function prevent new blood vessel growth and are potentially reversible by manipulations to decrease ROS. Novel strategies aimed at reducing hyperglycemia-induced ROS may be a useful adjuvant to antihyperglycemic therapies in the restoration of vasculogenesis and the prevention of diabetic complications
PMID: 16356110
ISSN: 1523-0864
CID: 62811

Stem cells and distraction osteogenesis: endothelial progenitor cells home to the ischemic generate in activation and consolidation

Cetrulo, Curtis L Jr; Knox, Kevin R; Brown, Daniel J; Ashinoff, Russell L; Dobryansky, Michael; Ceradini, Daniel J; Capla, Jennifer M; Chang, Edward I; Bhatt, Kirit A; McCarthy, Joseph G; Gurtner, Geoffrey C
BACKGROUND: Ischemia is a limiting factor during distraction osteogenesis. The authors sought to determine the extent of ischemia in the distraction zone and whether endothelial progenitor cells home to the distraction zone and participate in local vasculogenesis. METHODS: Laser Doppler imaging was used to assess the extent of blood flow in the distraction zone in gradually distracted, immediately distracted, and osteotomized rat mandibles during activation and consolidation. Animals (n = 50; 25 rats with unilateral gradual distraction and contralateral osteotomy as an internal control, and 25 rats with unilateral immediate distraction) were examined on postoperative days 4, 6, and 8 of activation, and after 1 and 2 weeks of consolidation. Endothelial progenitor cells isolated from human peripheral blood were labeled with fluorescent DiI dye, and 0.5 x 10 cells were injected intra-arterially under direct vision into each carotid artery at the start of activation in nude rats (n = 18) that then underwent the distraction protocol outlined above. RESULTS: Doppler flow analysis demonstrated relative ischemia during the activation period in the distraction osteogenesis group and increased blood flow in the osteotomized control group as compared with flow in a normal hemimandible [normal, 1 (standardized); distraction osteogenesis, 0.58 +/- 0.05; control, 2.58 +/- 0.21; p < 0.05 for both results]. We observed a significantly increased endothelial progenitor cell population at the generate site versus controls at midactivation and at 1 and 2 weeks of consolidation [25 +/- 1.9 versus 1 +/- 0.3 DiI-positive cells per high-power field (p < 0.05), 124 +/- 21 versus 8 +/- 4 DiI-positive cells per high-power field (p < 0.05), and 106 +/- 18 versus 9 +/- 3 DiI-positive cells per high-power field (p < 0.05), respectively]. CONCLUSIONS: These data suggest that the distraction zone becomes relatively ischemic during activation and that endothelial progenitor cells home to the ischemic generate site during the activation phase and remain during the consolidation phase. Selective expansion of these stem cells may be useful in overcoming ischemic limitations of distraction osteogenesis. Moreover, their homing capability may be used to effect site-specific transgene delivery to the generate
PMID: 16163094
ISSN: 1529-4242
CID: 62600

Therapeutic administration of superoxide dismutase (SOD) mimetics normalizes wound healing in diabetic mice [Meeting Abstract]

Churgin, SS; Callaghan, M; Galiano, R; Blechman, K; Ceradini, D; Gurtner, G
ISI:000231745800115
ISSN: 1072-7515
CID: 146288

Impaired progenitor cell trafficking with advanced age results in increased vascular complications [Meeting Abstract]

Chang, EI; Lin, SE; Bastidas, N; Aarabi, S; Georges, T; Ceradini, DJ; Gurtner, GC
ISI:000231745800090
ISSN: 1072-7515
CID: 146287

Topical vascular endothelial growth factor reverses delayed wound healing secondary to angiogenesis inhibitor administration

Michaels, Joseph 5th; Dobryansky, Michael; Galiano, Robert D; Bhatt, Kirit A; Ashinoff, Russell; Ceradini, Daniel J; Gurtner, Geoffrey C
The prevention of new blood vessel growth is an increasingly attractive strategy to limit tumor growth. However, it remains unclear whether anti-angiogenesis approaches will impair wound healing, a process thought to be angiogenesis dependent. Results of previous studies differ as to whether angiogenesis inhibitors delay wound healing. We evaluated whether endostatin at tumor-inhibiting doses delayed excisional wound closure. C57/BL6J mice were treated with endostatin or phosphate-buffered solution 3 days prior to the creation of two full-thickness wounds on the dorsum. Endostatin was administered daily until wound closure was complete. A third group received endostatin, but also had daily topical vascular endothelial growth factor applied locally to the wound. Wound area was measured daily and the wounds were analyzed for granulation tissue formation, epithelial gap, and wound vascularity. Endostatin-treated mice showed a significant delay in wound healing. Granulation tissue formation and wound vascularity were significantly decreased, but reepithelialization was not effected. Topical vascular endothelial growth factor application to wounds in endostatin-treated mice resulted in increased granulation tissue formation, increased wound vascularity, and wound closure approaching that of control mice. This study shows that the angiogenesis inhibitor endostatin delays wound healing and that topical vascular endothelial growth factor is effective in counteracting this effect
PMID: 16176459
ISSN: 1067-1927
CID: 62526

The role of oxygen tension in progenitor cell trafficking to sites of injury [Meeting Abstract]

Gurtner, GC; Ceradini, DJ; Tepper, OM
ISI:000227610701427
ISSN: 0892-6638
CID: 55693

Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells

Tepper, Oren M; Capla, Jennifer M; Galiano, Robert D; Ceradini, Daniel J; Callaghan, Matthew J; Kleinman, Mark E; Gurtner, Geoffrey C
Ischemia is a known stimulus for vascular growth. Bone marrow (BM)-derived endothelial progenitor cells (EPCs) are believed to contribute to new blood vessel growth, but the mechanism for this contribution is unknown. To elucidate how BM cells are able to form new blood vessels, a novel murine model of soft tissue ischemia was developed in lethally irradiated mice with BM reconstituted from either tie2/lacZ or ROSA/green fluorescent protein (GFP) mice (n = 24). BM-derived EPCs were recruited to ischemic tissue within 72 hours, and the extent of recruitment was directly proportional to the degree of tissue ischemia. At 7 days, there were persistently elevated levels of vascular endothelial growth factor (VEGF) (2.5-fold) and circulating VEGF receptor-2/CD11(-) (flk-1(+)/CD11(-)) cells (18-fold) which correlated with increased numbers of BM-derived EPCs within ischemic tissue. The cells were initially located extravascularly as proliferative clusters. By day 14, these clusters coalesced into vascular cords, which became functional vessels by day 21. In vitro examination of human EPCs from healthy volunteers (n = 10) confirmed that EPC proliferation, adhesion, and chemotaxis were all significantly stimulated in hypoxic conditions. We conclude that BM-derived cells produce new blood vessels via localized recruitment, proliferation, and differentiation of circulating cells in a sequence of events markedly different from existing paradigms of angiogenesis
PMID: 15388583
ISSN: 0006-4971
CID: 49297

Homing to Hypoxia: HIF-1 as a Mediator of Progenitor Cell Recruitment to Injured Tissue

Ceradini, Daniel J; Gurtner, Geoffrey C
The identification of bone marrow-derived endothelial progenitor cells has altered our understanding of new blood vessel growth and tissue regeneration. Previously, new blood vessel growth in the adult was thought to only occur through angiogenesis, the sprouting of new vessels from existing structures. However, it has become clear that circulating bone marrow-derived cells can form new blood vessels through a process of postnatal vasculogenesis, with endothelial progenitor cells selectively recruited to injured or ischemic tissue. How this process occurs has remained unclear. One common element in the different environments where vasculogenesis is believed to occur is the presence of a hypoxic stimulus. We have identified the chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 as critical mediators for the ischemia-specific recruitment of circulating progenitor cells. We have found that the endothelial expression of SDF-1 acts as a signal indicating the presence of tissue ischemia, and that its expression is directly regulated by hypoxia-inducible factor-1. Stromal cell-derived factor 1 is the only chemokine family member known to be regulated in this manner. Later events, including proliferation, patterning, and assembly of recruited progenitors into functional blood vessels, are also influenced by tissue oxygen tension and hypoxia. Interestingly, both SDF-1 and hypoxia are present in the bone marrow niche, suggesting that hypoxia may be a fundamental requirement for progenitor cell trafficking and function. As such, ischemic tissue may represent a conditional stem cell niche, with recruitment and retention of circulating progenitors regulated by hypoxia through differential expression of SDF-1
PMID: 15885571
ISSN: 1050-1738
CID: 55596

Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1

Ceradini, Daniel J; Kulkarni, Anita R; Callaghan, Matthew J; Tepper, Oren M; Bastidas, Nicholas; Kleinman, Mark E; Capla, Jennifer M; Galiano, Robert D; Levine, Jamie P; Gurtner, Geoffrey C
The trafficking of circulating stem and progenitor cells to areas of tissue damage is poorly understood. The chemokine stromal cell-derived factor-1 (SDF-1 or CXCL12) mediates homing of stem cells to bone marrow by binding to CXCR4 on circulating cells. SDF-1 and CXCR4 are expressed in complementary patterns during embryonic organogenesis and guide primordial stem cells to sites of rapid vascular expansion. However, the regulation of SDF-1 and its physiological role in peripheral tissue repair remain incompletely understood. Here we show that SDF-1 gene expression is regulated by the transcription factor hypoxia-inducible factor-1 (HIF-1) in endothelial cells, resulting in selective in vivo expression of SDF-1 in ischemic tissue in direct proportion to reduced oxygen tension. HIF-1-induced SDF-1 expression increases the adhesion, migration and homing of circulating CXCR4-positive progenitor cells to ischemic tissue. Blockade of SDF-1 in ischemic tissue or CXCR4 on circulating cells prevents progenitor cell recruitment to sites of injury. Discrete regions of hypoxia in the bone marrow compartment also show increased SDF-1 expression and progenitor cell tropism. These data show that the recruitment of CXCR4-positive progenitor cells to regenerating tissues is mediated by hypoxic gradients via HIF-1-induced expression of SDF-1
PMID: 15235597
ISSN: 1078-8956
CID: 48194