Try a new search

Format these results:

Searched for:

in-biosketch:true

person:ratnea01

Total Results:

147


Genome Sequence of Bacterial Interference Strain Staphylococcus aureus 502A

Parker, Dane; Narechania, Apurva; Sebra, Robert; Deikus, Gintaras; Larussa, Samuel; Ryan, Chanelle; Smith, Hannah; Prince, Alice; Mathema, Barun; Ratner, Adam J; Kreiswirth, Barry; Planet, Paul J
Staphylococcus aureus 502A was a strain used in bacterial interference programs during the 1960s and early 1970s. Infants were deliberately colonized with 502A with the goal of preventing colonization with more invasive strains. We present the completed genome sequence of this organism.
PMCID:3983310
PMID: 24723721
ISSN: 2169-8287
CID: 1687332

Case Report: Group B Streptococcus meningitis in an adolescent

Vittorino, Roselle; Hui-Yuen, Joyce; Ratner, Adam J; Starr, Amy; McCann, Teresa
Streptococcus agalactiae (group B Streptococcus, GBS) usually colonizes the gastrointestinal and lower genital tracts of asymptomatic hosts, yet the incidence of invasive disease is on the rise . We describe a case of an 18 year old woman, recently diagnosed with lupus, who reported a spontaneous abortion six weeks prior to her hospitalization. She presented with fever, altered mental status, and meningeal signs, paired with a positive blood culture for GBS. Magnetic resonance imaging of her brain demonstrated an extra-axial fluid collection, and she was diagnosed with meningitis. She received prolonged intravenous antibiotic therapy and aggressive treatment for lupus, leading to clinical recovery. This case illustrates the importance of recognizing GBS as a potential pathogen in all patients presenting with CNS infection .
PMCID:4193390
PMID: 25339988
ISSN: 2046-1402
CID: 1687342

[Pore-forming toxins in bacterial infections: targets for novel drugs]

Los, Ferdinand C O; Ratner, Adam J
Pore-forming toxins (PFTs) form a large group of bacterial virulence factors that play an important role in various infectious diseases. These include infections with problematic pathogens such as Streptococcus pneumoniae, Staphylococcus aureus, group A and B streptococci, Escherichia coli and Mycobacterium tuberculosis. PFTs perforate host cell membranes, which contributes to the establishment or exacerbation of an infection mainly in two ways: first, by disrupting the host immune response, and second, by helping bacteria to cross epithelial and endothelial barriers, thus allowing them to spread to other parts of the host. Although perforation of the plasma membrane can lead to host cell death, cells possess molecular defence mechanisms and under certain conditions can successfully defend themselves against PFTs. PFTs, as well as the immune response against PFTs, form a potential target for novel prophylactics and therapeutics against bacterial infectious disease, including against antibiotic-resistant strains.
PMID: 24713334
ISSN: 1876-8784
CID: 1687352

Lactobacillus crispatus dominant vaginal microbiome is associated with inhibitory activity of female genital tract secretions against Escherichia coli

Ghartey, Jeny P; Smith, Benjamin C; Chen, Zigui; Buckley, Niall; Lo, Yungtai; Ratner, Adam J; Herold, Betsy C; Burk, Robert D
OBJECTIVE: Female genital tract secretions inhibit E. coli ex vivo and the activity may prevent colonization and provide a biomarker of a healthy microbiome. We hypothesized that high E. coli inhibitory activity would be associated with a Lactobacillus crispatus and/or jensenii dominant microbiome and differ from that of women with low inhibitory activity. STUDY DESIGN: Vaginal swab cell pellets from 20 samples previously obtained in a cross-sectional study of near-term pregnant and non-pregnant healthy women were selected based on having high (>90% inhibition) or low (<20% inhibition) anti-E. coli activity. The V6 region of the 16S ribosomal RNA gene was amplified and sequenced using the Illumina HiSeq 2000 platform. Filtered culture supernatants from Lactobacillus crispatus, Lactobacillus iners, and Gardnerella vaginalis were also assayed for E. coli inhibitory activity. RESULTS: Sixteen samples (10 with high and 6 with low activity) yielded evaluable microbiome data. There was no difference in the predominant microbiome species in pregnant compared to non-pregnant women (n = 8 each). However, there were significant differences between women with high compared to low E. coli inhibitory activity. High activity was associated with a predominance of L. crispatus (p<0.007) and culture supernatants from L. crispatus exhibited greater E. coli inhibitory activity compared to supernatants obtained from L. iners or G. vaginalis. Notably, the E. coli inhibitory activity varied among different strains of L. crispatus. CONCLUSION: Microbiome communities with abundant L. crispatus likely contribute to the E. coli inhibitory activity of vaginal secretions and efforts to promote this environment may prevent E. coli colonization and related sequelae including preterm birth.
PMCID:4013016
PMID: 24805362
ISSN: 1932-6203
CID: 1687362

Emergence of the epidemic methicillin-resistant Staphylococcus aureus strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and speG-mediated adaptations for survival on skin

Planet, Paul J; LaRussa, Samuel J; Dana, Ali; Smith, Hannah; Xu, Amy; Ryan, Chanelle; Uhlemann, Anne-Catrin; Boundy, Sam; Goldberg, Julia; Narechania, Apurva; Kulkarni, Ritwij; Ratner, Adam J; Geoghegan, Joan A; Kolokotronis, Sergios-Orestis; Prince, Alice
The arginine catabolic mobile element (ACME) is the largest genomic region distinguishing epidemic USA300 strains of methicillin-resistant Staphylococcus aureus (MRSA) from other S. aureus strains. However, the functional relevance of ACME to infection and disease has remained unclear. Using phylogenetic analysis, we have shown that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event. Acquisition of one ACME gene, speG, allowed USA300 strains to withstand levels of polyamines (e.g., spermidine) produced in skin that are toxic to other closely related S. aureus strains. speG-mediated polyamine tolerance also enhanced biofilm formation, adherence to fibrinogen/fibronectin, and resistance to antibiotic and keratinocyte-mediated killing. We suggest that these properties gave USA300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone. IMPORTANCE: Over the past 15 years, methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem. It is likely that adaptations in specific MRSA lineages (e.g., USA300) drove the spread of MRSA across the United States and allowed it to replace other, less-virulent S. aureus strains. We suggest that one major factor in the evolutionary success of MRSA may have been the acquisition of a gene (speG) that allows S. aureus to evade the toxicity of polyamines (e.g., spermidine and spermine) that are produced in human skin. Polyamine tolerance likely gave MRSA multiple fitness advantages, including the formation of more-robust biofilms, increased adherence to host tissues, and resistance to antibiotics and killing by human skin cells.
PMCID:3870260
PMID: 24345744
ISSN: 2150-7511
CID: 1687372

Vaginolysin drives epithelial ultrastructural responses to Gardnerella vaginalis

Randis, Tara M; Zaklama, Joanne; LaRocca, Timothy J; Los, Ferdinand C O; Lewis, Emma L; Desai, Purnahamsi; Rampersaud, Ryan; Amaral, Fabio E; Ratner, Adam J
Gardnerella vaginalis, the bacterial species most frequently isolated from women with bacterial vaginosis (BV), produces a cholesterol-dependent cytolysin (CDC), vaginolysin (VLY). At sublytic concentrations, CDCs may initiate complex signaling cascades crucial to target cell survival. Using live-cell imaging, we observed the rapid formation of large membrane blebs in human vaginal and cervical epithelial cells (VK2 and HeLa cells) exposed to recombinant VLY toxin and to cell-free supernatants from growing liquid cultures of G. vaginalis. Binding of VLY to its human-specific receptor (hCD59) is required for bleb formation, as antibody inhibition of either toxin or hCD59 abrogates this response, and transfection of nonhuman cells (CHO-K1) with hCD59 renders them susceptible to toxin-induced membrane blebbing. Disruption of the pore formation process (by exposure to pore-deficient toxoids or pretreatment of cells with methyl-beta-cyclodextrin) or osmotic protection of target cells inhibits VLY-induced membrane blebbing. These results indicate that the formation of functional pores drives the observed ultrastructural rearrangements. Rapid bleb formation may represent a conserved response of epithelial cells to sublytic quantities of pore-forming toxins, and VLY-induced epithelial cell membrane blebbing in the vaginal mucosa may play a role in the pathogenesis of BV.
PMCID:3837968
PMID: 24082080
ISSN: 1098-5522
CID: 1687382

Role of pore-forming toxins in bacterial infectious diseases

Los, Ferdinand C O; Randis, Tara M; Aroian, Raffi V; Ratner, Adam J
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
PMCID:3668673
PMID: 23699254
ISSN: 1098-5557
CID: 1687392

DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo

Hymes, Saul R; Randis, Tara M; Sun, Thomas Yang; Ratner, Adam J
Bacterial vaginosis is a highly prevalent and poorly understood polymicrobial disorder of the vaginal microbiota, with significant adverse sequelae. Gardnerella vaginalis predominates in bacterial vaginosis. Biofilms of G. vaginalis are present in human infections and are implicated in persistent disease, treatment failure, and transmission. Here we demonstrate that G. vaginalis biofilms contain extracellular DNA, which is essential to their structural integrity. Enzymatic disruption of this DNA specifically inhibits biofilms, acting on both newly forming and established biofilms. DNase liberates bacteria from the biofilm to supernatant fractions and potentiates the activity of metronidazole, an antimicrobial agent used in the treatment of bacterial vaginosis. Using a new murine vaginal colonization model for G. vaginalis, we demonstrate >10-fold inhibition of G. vaginalis colonization by DNase. We conclude that DNase merits investigation as a potential nonantibiotic adjunct to existing bacterial vaginosis therapies in order to decrease the risk of chronic infection, recurrence, and associated morbidities.
PMCID:3627197
PMID: 23431033
ISSN: 1537-6613
CID: 1687402

Bordetella holmesii: initial genomic analysis of an emerging opportunist

Planet, Paul J; Narechania, Apurva; Hymes, Saul R; Gagliardo, Christina; Huard, Richard C; Whittier, Susan; Della-Latta, Phyllis; Ratner, Adam J
Bordetella holmesii is an emerging opportunistic pathogen that causes respiratory disease in healthy individuals and invasive infections among patients lacking splenic function. We used 16S rRNA gene analysis to confirm B. holmesii as the cause of bacteremia in a child with sickle cell disease. Semiconductor-based draft genome sequencing provided insight into B. holmesii phylogeny and potential virulence mechanisms and also identified a toluene-4-monoxygenase locus unique among bordetellae.
PMCID:3653170
PMID: 23620158
ISSN: 2049-632x
CID: 453722

Klebsiella pneumoniae K1 liver abscess and septic endophthalmitis in a U.S. resident [Case Report]

Sachdev, Darpun D; Yin, Michael T; Horowitz, Jason D; Mukkamala, Sri Krishna; Lee, Song Eun; Ratner, Adam J
Klebsiella pneumoniae K1 is a major agent of hepatic abscess with metastatic disease in East Asia, with sporadic reports originating elsewhere. We report a case of abscess complicated by septic endophthalmitis caused by a wzyAKpK1-positive Klebsiella strain in a U.S. resident, raising concern for global emergence.
PMCID:3592058
PMID: 23303492
ISSN: 0095-1137
CID: 952372