Searched for: in-biosketch:true
person:wkd1
The evolution of epilepsy surgery between 1991 and 2011 in nine major epilepsy centers across the United States, Germany, and Australia
Jehi, Lara; Friedman, Daniel; Carlson, Chad; Cascino, Gregory; Dewar, Sandra; Elger, Christian; Engel, Jerome Jr; Knowlton, Robert; Kuzniecky, Ruben; McIntosh, Anne; O'Brien, Terence J; Spencer, Dennis; Sperling, Michael R; Worrell, Gregory; Bingaman, Bill; Gonzalez-Martinez, Jorge; Doyle, Werner; French, Jacqueline
OBJECTIVE: Epilepsy surgery is the most effective treatment for select patients with drug-resistant epilepsy. In this article, we aim to provide an accurate understanding of the current epidemiologic characteristics of this intervention, as this knowledge is critical for guiding educational, academic, and resource priorities. METHODS: We profile the practice of epilepsy surgery between 1991 and 2011 in nine major epilepsy surgery centers in the United States, Germany, and Australia. Clinical, imaging, surgical, and histopathologic data were derived from the surgical databases at various centers. RESULTS: Although five of the centers performed their highest number of surgeries for mesial temporal sclerosis (MTS) in 1991, and three had their highest number of MTS surgeries in 2001, only one center achieved its peak number of MTS surgeries in 2011. The most productive year for MTS surgeries varied then by center; overall, the nine centers surveyed performed 48% (95% confidence interval [CI] -27.3% to -67.4%) fewer such surgeries in 2011 compared to either 1991 or 2001, whichever was higher. There was a parallel increase in the performance of surgery for nonlesional epilepsy. Further analysis of 5/9 centers showed a yearly increase of 0.6 +/- 0.07% in the performance of invasive electroencephalography (EEG) without subsequent resections. Overall, although MTS was the main surgical substrate in 1991 and 2001 (proportion of total surgeries in study centers ranging from 33.3% to 70.2%); it occupied only 33.6% of all resections in 2011 in the context of an overall stable total surgical volume. SIGNIFICANCE: These findings highlight the major aspects of the evolution of epilepsy surgery across the past two decades in a sample of well-established epilepsy surgery centers, and the critical current challenges of this treatment option in addressing complex epilepsy cases requiring detailed evaluations. Possible causes and implications of these findings are discussed.
PMCID:5082694
PMID: 26250432
ISSN: 1528-1167
CID: 1812732
Cortical Gray-White Matter Blurring and Cognitive Morbidity in Focal Cortical Dysplasia
Blackmon, Karen; Kuzniecky, Ruben; Barr, William B; Snuderl, Matija; Doyle, Werner; Devinsky, Orrin; Thesen, Thomas
Focal cortical dysplasia (FCD) is a malformation of cortical development that is associated with high rates of cognitive morbidity. However, the degree to which specific irregularities of dysplastic tissue directly impact cognition remains unknown. This study investigates the relationship between blurring of the cortical gray and white matter boundary on magnetic resonance imaging (MRI) and global cognitive abilities in FCD. Gray-white blurring (GWB) is quantified by sampling the non-normalized T1 image intensity contrast above and below the gray and white matter interface along the cortical mantle. Spherical averaging is used to compare resulting GWB for patients with histopathologically verified FCD with matched controls. Whole-brain correlational analyses are used to investigate the relationship between blurring and general cognitive abilities, controlling for epilepsy duration. Results show that cognitive performance is reduced in patients with FCD relative to controls. Patients show increased GWB in bilateral temporal, parietal, and frontal regions. Furthermore, increased GWB in these regions is linearly related to decreased cognition and mediates group differences in cognitive performance. These findings demonstrate that GWB is a marker of reduced cognitive efficiency in FCD that can potentially be used to probe general and domain-specific cognitive functions in other neurological disorders.
PMID: 24770710
ISSN: 1047-3211
CID: 921782
Cortical feature analysis and machine learning improves detection of "MRI-negative" focal cortical dysplasia
Ahmed, Bilal; Brodley, Carla E; Blackmon, Karen E; Kuzniecky, Ruben; Barash, Gilad; Carlson, Chad; Quinn, Brian T; Doyle, Werner; French, Jacqueline; Devinsky, Orrin; Thesen, Thomas
Focal cortical dysplasia (FCD) is the most common cause of pediatric epilepsy and the third most common lesion in adults with treatment-resistant epilepsy. Advances in MRI have revolutionized the diagnosis of FCD, resulting in higher success rates for resective epilepsy surgery. However, many patients with histologically confirmed FCD have normal presurgical MRI studies ('MRI-negative'), making presurgical diagnosis difficult. The purpose of this study was to test whether a novel MRI postprocessing method successfully detects histopathologically verified FCD in a sample of patients without visually appreciable lesions. We applied an automated quantitative morphometry approach which computed five surface-based MRI features and combined them in a machine learning model to classify lesional and nonlesional vertices. Accuracy was defined by classifying contiguous vertices as "lesional" when they fell within the surgical resection region. Our multivariate method correctly detected the lesion in 6 of 7 MRI-positive patients, which is comparable with the detection rates that have been reported in univariate vertex-based morphometry studies. More significantly, in patients that were MRI-negative, machine learning correctly identified 14 out of 24 FCD lesions (58%). This was achieved after separating abnormal thickness and thinness into distinct classifiers, as well as separating sulcal and gyral regions. Results demonstrate that MRI-negative images contain sufficient information to aid in the in vivo detection of visually elusive FCD lesions.
PMCID:4500682
PMID: 26037845
ISSN: 1525-5069
CID: 1615532
The corpus callosum and recovery of working memory after epilepsy surgery
Blackmon, Karen; Pardoe, Heath R; Barr, William B; Ardekani, Babak A; Doyle, Werner K; Devinsky, Orrin; Kuzniecky, Ruben; Thesen, Thomas
OBJECTIVE: For patients with medically intractable focal epilepsy, the benefit of epilepsy surgery must be weighed against the risk of cognitive decline. Clinical factors such as age and presurgical cognitive level partially predict cognitive outcome; yet, little is known about the role of cross-hemispheric white matter pathways in supporting postsurgical recovery of cognitive function. The purpose of this study is to determine whether the presurgical corpus callosum (CC) midsagittal area is associated with pre- to postsurgical change following epilepsy surgery. METHODS: In this observational study, we retrospectively identified 24 adult patients from an epilepsy resection series who completed preoperative high-resolution T1 -weighted magnetic resonance imaging (MRI) scans, as well as pre- and postsurgical neuropsychological testing. The total area and seven subregional areas of the CC were measured on the midsagittal MRI slice using an automated method. Standardized indices of auditory-verbal working memory and delayed memory were used to probe cognitive change from pre- to postsurgery. CC total and subregional areas were regressed on memory-change scores, after controlling for overall brain volume, age, presurgical memory scores, and duration of epilepsy. RESULTS: Patients had significantly reduced CC area relative to healthy controls. We found a positive relationship between CC area and change in working memory, but not delayed memory; specifically, the larger the CC, the greater the postsurgical improvement in working memory (beta = 0.523; p = 0.009). Effects were strongest in posterior CC subregions. There was no relationship between CC area and presurgical memory scores. SIGNIFICANCE: Findings indicate that larger CC area, measured presurgically, is related to improvement in working memory abilities following epilepsy surgery. This suggests that transcallosal pathways may play an important, yet little understood, role in postsurgical recovery of cognitive functions.
PMID: 25684448
ISSN: 0013-9580
CID: 1465932
NeuroGrid: recording action potentials from the surface of the brain
Khodagholy, Dion; Gelinas, Jennifer N; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G; Buzsaki, Gyorgy
Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders.
PMCID:4308485
PMID: 25531570
ISSN: 1097-6256
CID: 1416182
Sensory-motor transformations for speech occur bilaterally
Cogan, Gregory B; Thesen, Thomas; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan
Historically, the study of speech processing has emphasized a strong link between auditory perceptual input and motor production output. A kind of 'parity' is essential, as both perception- and production-based representations must form a unified interface to facilitate access to higher-order language processes such as syntax and semantics, believed to be computed in the dominant, typically left hemisphere. Although various theories have been proposed to unite perception and production, the underlying neural mechanisms are unclear. Early models of speech and language processing proposed that perceptual processing occurred in the left posterior superior temporal gyrus (Wernicke's area) and motor production processes occurred in the left inferior frontal gyrus (Broca's area). Sensory activity was proposed to link to production activity through connecting fibre tracts, forming the left lateralized speech sensory-motor system. Although recent evidence indicates that speech perception occurs bilaterally, prevailing models maintain that the speech sensory-motor system is left lateralized and facilitates the transformation from sensory-based auditory representations to motor-based production representations. However, evidence for the lateralized computation of sensory-motor speech transformations is indirect and primarily comes from stroke patients that have speech repetition deficits (conduction aphasia) and studies using covert speech and haemodynamic functional imaging. Whether the speech sensory-motor system is lateralized, like higher-order language processes, or bilateral, like speech perception, is controversial. Here we use direct neural recordings in subjects performing sensory-motor tasks involving overt speech production to show that sensory-motor transformations occur bilaterally. We demonstrate that electrodes over bilateral inferior frontal, inferior parietal, superior temporal, premotor and somatosensory cortices exhibit robust sensory-motor neural responses during both perception and production in an overt word-repetition task. Using a non-word transformation task, we show that bilateral sensory-motor responses can perform transformations between speech-perception- and speech-production-based representations. These results establish a bilateral sublexical speech sensory-motor system.
PMCID:4000028
PMID: 24429520
ISSN: 0028-0836
CID: 753402
Response [Letter]
Elliott, Robert; Carlson, Chad; Doyle, Werner; Devinsky, Orrin
PMID: 24724176
ISSN: 0022-3085
CID: 921762
Intracranial Cortical Responses during Visual-Tactile Integration in Humans
Quinn, Brian T; Carlson, Chad; Doyle, Werner; Cash, Sydney S; Devinsky, Orrin; Spence, Charles; Halgren, Eric; Thesen, Thomas
Sensory integration of touch and sight is crucial to perceiving and navigating the environment. While recent evidence from other sensory modality combinations suggests that low-level sensory areas integrate multisensory information at early processing stages, little is known about how the brain combines visual and tactile information. We investigated the dynamics of multisensory integration between vision and touch using the high spatial and temporal resolution of intracranial electrocorticography in humans. We present a novel, two-step metric for defining multisensory integration. The first step compares the sum of the unisensory responses to the bimodal response as multisensory responses. The second step eliminates the possibility that double addition of sensory responses could be misinterpreted as interactions. Using these criteria, averaged local field potentials and high-gamma-band power demonstrate a functional processing cascade whereby sensory integration occurs late, both anatomically and temporally, in the temporo-parieto-occipital junction (TPOJ) and dorsolateral prefrontal cortex. Results further suggest two neurophysiologically distinct and temporally separated integration mechanisms in TPOJ, while providing direct evidence for local suppression as a dominant mechanism for synthesizing visual and tactile input. These results tend to support earlier concepts of multisensory integration as relatively late and centered in tertiary multimodal association cortices.
PMCID:3866483
PMID: 24381279
ISSN: 0270-6474
CID: 753022
Pre-surgical corpus callosum midsagittal cross-sectional area predicts post-surgical resilience in working memory [Meeting Abstract]
Blackmon, K; Kuzniecky, R; Barr, W; Thesen, T; Doyle, W; Devinsky, O; Ardekani, B; Pardoe, H
Rationale: For patients with medically intractable focal epilepsy, the best option for achieving seizure control is often surgical resection. In surgical planning, the potential for seizure reduction must be weighed against the risk of cognitive loss. The role that clinical and demographic factors play in predicting cognitive outcome is well established; however, little is known about the role of crosshemispheric white matter in promoting functional reorganization after surgery. In this study we measured the midsagittal crosssectional area of the corpus callosum (CC) on pre-surgical MRI to investigate whether this property is related to changes in working memory following surgery. Methods: A pre- and post-surgical neuropsychological test battery was obtained in 15 patients (9 males/6 females) who underwent temporal (n = 9), frontal (n = 4), temporal and frontal (n = 1) or parietal lobe (n = 1) resective surgery at NYU Langone Medical Center. Pre-surgical whole-brain T1-weighted 3D MRIs were acquired on all participants from the same dedicated research scanner. The midsaggital CC cross-sectional area was delineated and measured automatically on the MRI using 'yuki' (www.nitrc.org/projects/art), an automatic CC segmentation algorithm, described by Ardekani et al. 2012 (Figure 1A). The Working Memory Index (WMI) from the Wechsler Adult Intelligence Scale was used to probe change in concentration/working memory abilities (postsurgical W
EMBASE:71433632
ISSN: 1535-7597
CID: 981442
Efficacy of vagus nerve stimulation in brain tumor-associated intractable epilepsy and the importance of tumor stability
Patel, Kunal S; Moussazadeh, Nelson; Doyle, Werner K; Labar, Douglas R; Schwartz, Theodore H
Object Vagus nerve stimulation (VNS) is a viable option for patients with medically intractable epilepsy. However, there are no studies examining its effect on individuals with brain tumor-associated intractable epilepsy. This study aims to evaluate the efficacy of VNS in patients with brain tumor-associated medically intractable epilepsy. Methods Epilepsy surgery databases at 2 separate epilepsy centers were reviewed to identify patients in whom a VNS device was placed for tumor-related intractable epilepsy between January 1999 and December 2011. Preoperative and postoperative seizure frequency and type as well as antiepileptic drug (AED) regimens and degree of tumor progression were evaluated. Statistical analysis was performed using odds ratios and t-tests to examine efficacy. Results Sixteen patients were included in the study. Eight patients (50%) had an improved outcome (Engel Class I, II, or III) with an average follow-up of 39.6 months. The mean reduction in seizure frequency was 41.7% (p = 0.002). There was no significant change in AED regimens. Seizure frequency decreased by 10.9% in patients with progressing tumors and by 65.6% in patients with stable tumors (p = 0.008). Conclusions Vagus nerve stimulation therapy in individuals with brain tumor-associated medically intractable epilepsy was shown to be comparably effective in regard to seizure reduction and response rates to the general population of VNS therapy patients. Outcomes were better in patients with stable as opposed to progressing tumors. The authors' findings support the recommendation of VNS therapy in patients with brain tumor-associated intractable epilepsy, especially in cases in which imminent tumor progression is not expected. Vagus nerve stimulation may not be indicated in more malignant tumors.
PMCID:4020286
PMID: 23600931
ISSN: 0022-3085
CID: 489672