Searched for: in-biosketch:true
person:chandh02
Motion and Flow Robust Free-Breathing Diffusion Kurtosis Imaging of the Kidney
Gilani, Nima; Kumbella, Malika; Bruno, Mary; Veraart, Jelle; Li, Xiaochun; Goldberg, Judith D; Basukala, Dibash; Chandarana, Hersh; Sigmund, Eric E
The development of noninvasive MRI biomarkers as surrogates of histopathological features in kidney tissue requires detailed explorations of contrast. Therefore, we studied kidney diffusion kurtosis imaging (DKI) with a wide array of encodings, including flow compensation, variable directional sampling, and cardiac gating regimes. Twelve healthy volunteers underwent DKI at 5-10 diffusion weightings (b-values) ranging from 0 to 1200 smm-2 with 12 or 30 directional samplings, bipolar or flow-compensated diffusion gradient waveforms, and at systolic or diastolic cardiac phases. DKI biomarkers, mean diffusivity (MD) and kurtosis (MK), were interrogated using a directionally robust fitting algorithm compared to conventional fits. The combination of flow compensation and cardiac triggering at the diastolic phase in the kidneys reduced flow effects on DKI. In systole, flow-compensated waveforms significantly reduced MD and MK for both cortex and medulla: cortex MD: 3.00 versus 2.55 μm2 ms-1, medulla MD: 2.80 versus 2.39 μm2 ms-1, cortex MK: 0.58 versus 0.45, and medulla MK: 0.60 versus 0.47 (all p < 0.05). Flow suppression alleviated requirements for processing the DKI at higher minimum b-values, as neither MD nor MK significantly differed at the diastolic phase for minimum b-values of 0 versus 200 smm-2: cortex MD: 2.30 versus 2.28 μm2 ms-1, p = 0.278; medulla MD: 2.29 versus 2.28 μm2 ms-1, p = 0.437; cortex MK: 0.37 versus 0.36, p = 0.308; and medulla MK: 0.40 versus 0.40, p = 0.904. Flow-compensated waveforms mitigate cardiac and respiratory motion-related artifacts at higher diffusion encodings in addition to microcirculation effects. The robust fitting initially developed for brain DKI is highly applicable to the kidneys because it disentangles tissue-specific directional diffusion information from artifacts.
PMID: 41199578
ISSN: 1099-1492
CID: 5960252
Development and Deployment of a Machine Learning Model to Triage the Use of Prostate MRI (ProMT-ML) in Patients With Suspected Prostate Cancer
Persily, Jesse; Chandarana, Hersh; Tong, Angela; Ranganath, Rajesh; Taneja, Samir; Nayan, Madhur
BACKGROUND:Access to prostate MRI remains limited due to resource constraints and the need for expert interpretation. PURPOSE/OBJECTIVE:To develop machine learning (ML) models that enable risk-based triage for prostate MRI (ProMT-ML) in the evaluation of prostate cancer. STUDY TYPE/METHODS:Retrospective and prospective. POPULATION/METHODS:A total of 11,879 retrospective MRI scans for suspected prostate cancer from a multi-hospital health system, divided into training (N = 9504) and test (N = 2375) sets. A total of 4551 records for prospective validation. FIELD STRENGTH/SEQUENCE/UNASSIGNED:1.5T and 3T/Turbo-spin echo T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE). ASSESSMENT/RESULTS:Prostate Imaging Reporting and Data System (PI-RADS) scores were retrieved from MRI reports. The Boruta algorithm was used to select final input features from candidate features. Two models were developed using supervised ML to estimate the likelihood of an abnormal MRI, defined as PI-RADS ≥ 3: Model A (with prostate volume) and Model B (without prostate volume). Models were compared to PSA. Prostate biopsy pathology was assessed to evaluate potential clinical impact. STATISTICAL TESTS/METHODS:Area under the receiver operating characteristic curve (AUC) was the primary performance metric. RESULTS:A total of 5580 (46.9%) subjects had a PI-RADS score ≥ 3. After feature selection, Model A included age, PSA, body mass index, and prostate volume, while Model B included age, PSA, body mass index, and systolic blood pressure. Both models A (AUC 0.711) and B (AUC 0.616) significantly outperformed PSA (AUC 0.593). Compared to PSA threshold > 4 ng/mL, Model A demonstrated significantly improved specificity (28.3% vs. 21.9%) and no significant difference in sensitivity (89.0% vs. 86.7%). Among false negatives (Model A: 8.0% (62/776); Model B: 16.8% (130/776)), most (Model A: 87%; Model B: 69%) had benign or clinically insignificant disease on biopsy. On prospective validation, both versions of ProMT-ML significantly outperformed PSA. DATA CONCLUSION/CONCLUSIONS:ProMT-ML provides personalized risk estimates of abnormal prostate MRI and can support triage of this test. TECHNICAL EFFICACY/UNASSIGNED:Stage 4.
PMID: 41186967
ISSN: 1522-2586
CID: 5959702
Prostate Cancer Risk Stratification and Scan Tailoring Using Deep Learning on Abbreviated Prostate MRI
Johnson, Patricia M; Dutt, Tarun; Ginocchio, Luke A; Saimbhi, Amanpreet Singh; Umapathy, Lavanya; Block, Kai Tobias; Sodickson, Daniel K; Chopra, Sumit; Tong, Angela; Chandarana, Hersh
BACKGROUND:MRI plays a critical role in prostate cancer (PCa) detection and management. Bi-parametric MRI (bpMRI) offers a faster, contrast-free alternative to multi-parametric MRI (mpMRI). Routine use of mpMRI for all patients may not be necessary, and a tailored imaging approach (bpMRI or mpMRI) based on individual risk might optimize resource utilization. PURPOSE/OBJECTIVE:To develop and evaluate a deep learning (DL) model for classifying clinically significant PCa (csPCa) using bpMRI and to assess its potential for optimizing MRI protocol selection by recommending the additional sequences of mpMRI only when beneficial. STUDY TYPE/METHODS:Retrospective and prospective. POPULATION/METHODS:The DL model was trained and validated on 26,129 prostate MRI studies. A retrospective cohort of 151 patients (mean age 65 ± 8) with ground-truth verification from biopsy, prostatectomy, or long-term follow-up, alongside a prospective cohort of 142 treatment-naïve patients (mean age 65 ± 9) undergoing bpMRI, was evaluated. FIELD STRENGTH/SEQUENCE/UNASSIGNED:3 T, Turbo-spin echo T2-weighted imaging (T2WI) and single shot EPI diffusion-weighted imaging (DWI). ASSESSMENT/RESULTS:The DL model, based on a 3D ResNet-50 architecture, classified csPCa using PI-RADS ≥ 3 and Gleason ≥ 7 as outcome measures. The model was evaluated on a prospective cohort labeled by consensus of three radiologists and a retrospective cohort with ground truth verification based on biopsy or long-term follow-up. Real-time inference was tested on an automated MRI workflow, providing classification results directly at the scanner. STATISTICAL TESTS/METHODS:AUROC with 95% confidence intervals (CI) was used to evaluate model performance. RESULTS:In the prospective cohort, the model achieved an AUC of 0.83 (95% CI: 0.77-0.89) for PI-RADS ≥ 3 classification, with 93% sensitivity and 54% specificity. In the retrospective cohort, the model achieved an AUC of 0.86 (95% CI: 0.80-0.91) for Gleason ≥ 7 classification, with 93% sensitivity and 62% specificity. Real-time implementation demonstrated a processing latency of 14-16 s for protocol recommendations. DATA CONCLUSION/CONCLUSIONS:The proposed DL model identifies csPCa using bpMRI and integrates it into clinical workflows. EVIDENCE LEVEL/METHODS:1. TECHNICAL EFFICACY/UNASSIGNED:Stage 2.
PMID: 40259798
ISSN: 1522-2586
CID: 5830062
Accelerated Abdominal MRI: A Review of Current Methods and Applications
Feng, Li; Chandarana, Hersh
MRI is widely used for the diagnosis and management of various abdominal diseases involving organs such as the liver, pancreas, and kidneys. However, one major limitation of MRI is its relatively slow imaging speed compared to other modalities. In addition, respiratory motion poses a significant challenge in abdominal MRI, often requiring patients to hold their breath multiple times during an exam. This requirement can be particularly challenging for sick, elderly, and pediatric patients, who may have reduced breath-holding capacity. As a result, rapid imaging plays an important role in routine clinical abdominal MRI exams. Accelerated data acquisition not only reduces overall exam time but also shortens breath-hold durations, thereby improving patient comfort and compliance. Over the past decade, significant advancements in rapid MRI have led to the development of various accelerated imaging techniques for routine clinical use. These methods improve abdominal MRI by enhancing imaging speed, motion compensation, and overall image quality. Integrating these techniques into clinical practice also enables new applications that were previously challenging. This paper provides a concise yet comprehensive overview of rapid imaging techniques applicable to abdominal MRI and discusses their advantages, limitations, and potential clinical applications. By the end of this review, readers are expected to learn the latest advances in accelerated abdominal MRI and explore new frontiers in this evolving field. Evidence Level: N/A Technical Efficacy: Stage 5.
PMID: 40103292
ISSN: 1522-2586
CID: 5813342
External evaluation of an open-source deep learning model for prostate cancer detection on bi-parametric MRI
Johnson, Patricia M; Tong, Angela; Ginocchio, Luke; Del Hoyo, Juan Lloret; Smereka, Paul; Harmon, Stephanie A; Turkbey, Baris; Chandarana, Hersh
OBJECTIVES/OBJECTIVE:This study aims to evaluate the diagnostic accuracy of an open-source deep learning (DL) model for detecting clinically significant prostate cancer (csPCa) in biparametric MRI (bpMRI). It also aims to outline the necessary components of the model that facilitate effective sharing and external evaluation of PCa detection models. MATERIALS AND METHODS/METHODS:This retrospective diagnostic accuracy study evaluated a publicly available DL model trained to detect PCa on bpMRI. External validation was performed on bpMRI exams from 151 biologically male patients (mean age, 65 ± 8 years). The model's performance was evaluated using patient-level classification of PCa with both radiologist interpretation and histopathology serving as the ground truth. The model processed bpMRI inputs to generate lesion probability maps. Performance was assessed using the area under the receiver operating characteristic curve (AUC) for PI-RADS ≥ 3, PI-RADS ≥ 4, and csPCa (defined as Gleason ≥ 7) at an exam level. RESULTS:The model achieved AUCs of 0.86 (95% CI: 0.80-0.92) and 0.91 (95% CI: 0.85-0.96) for predicting PI-RADS ≥ 3 and ≥ 4 exams, respectively, and 0.78 (95% CI: 0.71-0.86) for csPCa. Sensitivity and specificity for csPCa were 0.87 and 0.53, respectively. Fleiss' kappa for inter-reader agreement was 0.51. CONCLUSION/CONCLUSIONS:The open-source DL model offers high sensitivity to clinically significant prostate cancer. The study underscores the importance of sharing model code and weights to enable effective external validation and further research. KEY POINTS/CONCLUSIONS:Question Inter-reader variability hinders the consistent and accurate detection of clinically significant prostate cancer in MRI. Findings An open-source deep learning model demonstrated reproducible diagnostic accuracy, achieving AUCs of 0.86 for PI-RADS ≥ 3 and 0.78 for CsPCa lesions. Clinical relevance The model's high sensitivity for MRI-positive lesions (PI-RADS ≥ 3) may provide support for radiologists. Its open-source deployment facilitates further development and evaluation across diverse clinical settings, maximizing its potential utility.
PMID: 40753327
ISSN: 1432-1084
CID: 5903962
Leveraging Representation Learning for Bi-parametric Prostate MRI to Disambiguate PI-RADS 3 and Improve Biopsy Decision Strategies
Umapathy, Lavanya; Johnson, Patricia M; Dutt, Tarun; Tong, Angela; Chopra, Sumit; Sodickson, Daniel K; Chandarana, Hersh
OBJECTIVES/OBJECTIVE:Despite its high negative predictive value (NPV) for clinically significant prostate cancer (csPCa), MRI suffers from a substantial number of false positives, especially for intermediate-risk cases. In this work, we determine whether a deep learning model trained with PI-RADS-guided representation learning can disambiguate the PI-RADS 3 classification, detect csPCa from bi-parametric prostate MR images, and avoid unnecessary benign biopsies. MATERIALS AND METHODS/METHODS:This study included 28,263 MR examinations and radiology reports from 21,938 men imaged for known or suspected prostate cancer between 2015 and 2023 at our institution (21 imaging locations with 34 readers), with 6352 subsequent biopsies. We trained a deep learning model, a representation learner (RL), to learn how radiologists interpret conventionally acquired T2-weighted and diffusion-weighted MR images, using exams in which the radiologists are confident in their risk assessments (PI-RADS 1 and 2 for the absence of csPCa vs. PI-RADS 4 and 5 for the presence of csPCa, n=21,465). We then trained biopsy-decision models to detect csPCa (Gleason score ≥7) using these learned image representations, and compared them to the performance of radiologists, and of models trained on other clinical variables (age, prostate volume, PSA, and PSA density) for treatment-naïve test cohorts consisting of only PI-RADS 3 (n=253, csPCa=103) and all PI-RADS (n=531, csPCa=300) cases. RESULTS:On the 2 test cohorts (PI-RADS-3-only, all-PI-RADS), RL-based biopsy-decision models consistently yielded higher AUCs in detecting csPCa (AUC=0.73 [0.66, 0.79], 0.88 [0.85, 0.91]) compared with radiologists (equivocal, AUC=0.79 [0.75, 0.83]) and the clinical model (AUCs=0.69 [0.62, 0.75], 0.78 [0.74, 0.82]). In the PIRADS-3-only cohort, all of whom would be biopsied using our institution's standard of care, the RL decision model avoided 41% (62/150) of benign biopsies compared with the clinical model (26%, P<0.001), and improved biopsy yield by 10% compared with the PI-RADS ≥3 decision strategy (0.50 vs. 0.40). Furthermore, on the all-PI-RADS cohort, RL decision model avoided 27% of additional benign biopsies (138/231) compared to radiologists (33%, P<0.001) with comparable sensitivity (93% vs. 92%), higher NPV (0.87 vs. 0.77), and biopsy yield (0.75 vs. 0.64). The combination of clinical and RL decision models further avoided benign biopsies (46% in PI-RADS-3-only and 62% in all-PI-RADS) while improving NPV (0.82, 0.88) and biopsy yields (0.52, 0.76) across the 2 test cohorts. CONCLUSIONS:Our PI-RADS-guided deep learning RL model learns summary representations from bi-parametric prostate MR images that can provide additional information to disambiguate intermediate-risk PI-RADS 3 assessments. The resulting RL-based biopsy decision models also outperformed radiologists in avoiding benign biopsies while maintaining comparable sensitivity to csPCa for the all-PI-RADS cohort. Such AI models can easily be integrated into clinical practice to supplement radiologists' reads in general and improve biopsy yield for any equivocal decisions.
PMID: 40586610
ISSN: 1536-0210
CID: 5887552
Free-Breathing Hybrid Technique for Simultaneous Morphological and Quantitative Abdominal Imaging at 0.55 T
B Keerthivasan, Mahesh; Bruno, Mary; Solomon, Eddy; Brown, Ryan; Brantner, Douglas; Block, Kai Tobias; Chandarana, Hersh
OBJECTIVES/OBJECTIVE:Quantitative proton density fat fraction (PDFF) and R2* estimation at lower field strengths, such as 0.55 T, is challenging due to lower signal-to-noise ratio, reduced fat water chemical shift, and increased T2* relaxation times. In this study, we propose a 3D hybrid technique for abdominal imaging at 0.55 T that enables the simultaneous acquisition of T2-weighted and T1-weighted images and quantification of fat fraction and R2* parameters. MATERIALS AND METHODS/METHODS:Numerical simulations were performed to optimize a prototype radial hybrid turbo spin echo gradient echo (TSE-GRE) acquisition scheme for improved PDFF and R2* estimation accuracy. Phantom imaging experiments with and without motion were performed to evaluate the sensitivity of the estimation to external motion. Eleven volunteers were imaged on a prototype 0.55 T system. Data were acquired using the proposed technique under free-breathing conditions, and motion-compensated reconstruction was performed using the respiratory signal from a pilot-tone device. Image contrast and estimation performance were compared with conventional acquisition schemes in vitro and in vivo. RESULTS:Numerical simulations indicated R2* estimation accuracy was more sensitive to the choice of echo time compared with PDFF. Performing motion compensation reduced the mean error in R2* from 24 to 5 s-1 while the mean error in PDFF only reduced from 2.7% to 1.6%. The proposed technique generated T2-weighted images with comparable relative liver-spleen contrast as conventional imaging and there were no significant differences (P>0.05) in the PDFF and R2* values estimated from the hybrid technique compared with conventional multi-echo GRE. Further, the free-breathing acquisition allowed improved slice coverage while overcoming breath-hold limitations of conventional acquisition schemes. CONCLUSIONS:The use of a hybrid TSE-GRE acquisition technique can allow simultaneous morphological and quantitative PDFF and R2* estimation at 0.55 T under free-breathing conditions.
PMID: 40511639
ISSN: 1536-0210
CID: 5869742
Deep Learning-accelerated MRI in Body and Chest
Rajamohan, Naveen; Bagga, Barun; Bansal, Bhavik; Ginocchio, Luke; Gupta, Amit; Chandarana, Hersh
Deep learning reconstruction (DLR) provides an elegant solution for MR acceleration while preserving image quality. This advancement is crucial for body imaging, which is frequently marred by the increased likelihood of motion-related artifacts. Multiple vendor-specific models focusing on T2, T1, and diffusion-weighted imaging have been developed for the abdomen, pelvis, and chest, with the liver and prostate being the most well-studied organ systems. Variational networks with supervised DL models, including data consistency layers and regularizers, are the most common DLR methods. The common theme for all single-center studies on this subject has been noninferior or superior image quality metrics and lesion conspicuity to conventional sequences despite significant acquisition time reduction. DLR also provides a potential for denoising, artifact reduction, increased resolution, and increased signal-noise ratio (SNR) and contrast-to-noise ratio (CNR) that can be balanced with acceleration benefits depending on the imaged organ system. Some specific challenges faced by DLR include slightly reduced lesion detection, cardiac motion-related signal loss, regional SNR variations, and variabilities in ADC measurements as reported in different organ systems. Continued investigations with large-scale multicenter prospective clinical validation of DLR to document generalizability and demonstrate noninferior diagnostic accuracy with histopathologic correlation are the need of the hour. The creation of vendor-neutral solutions, open data sharing, and diversifying training data sets are also critical to strengthening model robustness.
PMID: 40360272
ISSN: 1532-3145
CID: 5844202
Applications of artificial intelligence in abdominal imaging
Gupta, Amit; Rajamohan, Naveen; Bansal, Bhavik; Chaudhri, Sukriti; Chandarana, Hersh; Bagga, Barun
The rapid advancements in artificial intelligence (AI) carry the promise to reshape abdominal imaging by offering transformative solutions to challenges in disease detection, classification, and personalized care. AI applications, particularly those leveraging deep learning and radiomics, have demonstrated remarkable accuracy in detecting a wide range of abdominal conditions, including but not limited to diffuse liver parenchymal disease, focal liver lesions, pancreatic ductal adenocarcinoma (PDAC), renal tumors, and bowel pathologies. These models excel in the automation of tasks such as segmentation, classification, and prognostication across modalities like ultrasound, CT, and MRI, often surpassing traditional diagnostic methods. Despite these advancements, widespread adoption remains limited by challenges such as data heterogeneity, lack of multicenter validation, reliance on retrospective single-center studies, and the "black box" nature of many AI models, which hinder interpretability and clinician trust. The absence of standardized imaging protocols and reference gold standards further complicates integration into clinical workflows. To address these barriers, future directions emphasize collaborative multi-center efforts to generate diverse, standardized datasets, integration of explainable AI frameworks to existing picture archiving and communication systems, and the development of automated, end-to-end pipelines capable of processing multi-source data. Targeted clinical applications, such as early detection of PDAC, improved segmentation of renal tumors, and improved risk stratification in liver diseases, show potential to refine diagnostic accuracy and therapeutic planning. Ethical considerations, such as data privacy, regulatory compliance, and interdisciplinary collaboration, are essential for successful translation into clinical practice. AI's transformative potential in abdominal imaging lies not only in complementing radiologists but also in fostering precision medicine by enabling faster, more accurate, and patient-centered care. Overcoming current limitations through innovation and collaboration will be pivotal in realizing AI's full potential to improve patient outcomes and redefine the landscape of abdominal radiology.
PMID: 40418375
ISSN: 2366-0058
CID: 5855092
Accelerated T2-weighted MRI of the bowel at 3T using a single-shot technique with deep learning-based image reconstruction: impact on image quality and disease detection
Dane, Bari; Bagga, Barun; Bansal, Bhavik; Beier, Sarah; Kim, Sooah; Reddy, Arthi; Fenty, Felicia; Keerthivasan, Mahesh; Chandarana, Hersh
RATIONALE AND OBJECTIVE/OBJECTIVE:A single-shot T2-weighted deep-learning-based image reconstruction (DL-HASTE) has been recently developed allowing for shorter acquisition time than conventional half-Fourier acquisition single-shot turbo-spin echo (HASTE). The purpose of this study was to compare image quality of conventional 6 mm HASTE with DL-HASTE at 4 mm and 6 mm slice thickness. MATERIALS AND METHODS/METHODS:91 patients (51 female; mean±SD age: 44±10years) who underwent 3T MR enterography from 5/15/2023-7/15/2023 including pelvic conventional HASTE and DL-HASTE were included. Patients either had 4 mm-DL-HASTE or 6 mm-DL-HASTE. Four abdominal radiologists, blinded to sequence type, independently evaluated overall image quality, artifacts over bowel, bowel wall sharpness, and confidence for the presence/absence of bowel abnormalities on 5-point Likert scales. Readers recorded the presence/absence of ileal wall thickening, ileal inflammation, stricture, and penetrating disease on each sequence. Wilcoxon signed-rank test with continuity correction was used for paired comparisons and Wilcoxon rank sum test was used for unpaired ordinal comparisons. A p < .05 indicated statistical significance. RESULTS:Acquisition times for 6 mm HASTE, 4 mm-DL-HASTE, and 6 mm-DL-HASTE were 64 s, 51 s, and 49 s, respectively. Overall image quality and bowel sharpness were significantly improved for 4 mm-DL-HASTE versus HASTE for 3/4 readers (all p < .05) and similar for the 4th reader (p > .05). Diagnostic confidence was similar for all readers (p > .05). 6 mm-DL-HASTE was similar to HASTE for bowel sharpness, image quality, and confidence for 3/4 readers (all p > .05). The presence of ileal thickening, ileal inflammation, stricture, and penetrating disease were similar for all readers for HASTE, 4 mm-DL-HASTE, and 6 mm-DL-HASTE (all p > .05). CONCLUSION/CONCLUSIONS:4 mm-DL-HASTE had superior image quality than conventional HASTE at shorter acquisition time.
PMID: 39198137
ISSN: 1878-4046
CID: 5684882