Try a new search

Format these results:

Searched for:

in-biosketch:true

person:odonnl02

Total Results:

3


Evaluating Hospital Course Summarization by an Electronic Health Record-Based Large Language Model

Small, William R; Austrian, Jonathan; O'Donnell, Luke; Burk-Rafel, Jesse; Hochman, Katherine A; Goodman, Adam; Zaretsky, Jonah; Martin, Jacob; Johnson, Stephen; Major, Vincent J; Jones, Simon; Henke, Christian; Verplanke, Benjamin; Osso, Jwan; Larson, Ian; Saxena, Archana; Mednick, Aron; Simonis, Choumika; Han, Joseph; Kesari, Ravi; Wu, Xinyuan; Heery, Lauren; Desel, Tenzin; Baskharoun, Samuel; Figman, Noah; Farooq, Umar; Shah, Kunal; Jahan, Nusrat; Kim, Jeong Min; Testa, Paul; Feldman, Jonah
IMPORTANCE/UNASSIGNED:Hospital course (HC) summarization represents an increasingly onerous discharge summary component for physicians. Literature supports large language models (LLMs) for HC summarization, but whether physicians can effectively partner with electronic health record-embedded LLMs to draft HCs is unknown. OBJECTIVES/UNASSIGNED:To compare the editing effort required by time-constrained resident physicians to improve LLM- vs physician-generated HCs toward a novel 4Cs (complete, concise, cohesive, and confabulation-free) HC. DESIGN, SETTING, AND PARTICIPANTS/UNASSIGNED:Quality improvement study using a convenience sample of 10 internal medicine resident editors, 8 hospitalist evaluators, and randomly selected general medicine admissions in December 2023 lasting 4 to 8 days at New York University Langone Health. EXPOSURES/UNASSIGNED:Residents and hospitalists reviewed randomly assigned patient medical records for 10 minutes. Residents blinded to author type who edited each HC pair (physician and LLM) for quality in 3 minutes, followed by comparative ratings by attending hospitalists. MAIN OUTCOMES AND MEASURES/UNASSIGNED:Editing effort was quantified by analyzing the edits that occurred on the HC pairs after controlling for length (percentage edited) and the degree to which the original HCs' meaning was altered (semantic change). Hospitalists compared edited HC pairs with A/B testing on the 4Cs (5-point Likert scales converted to 10-point bidirectional scales). RESULTS/UNASSIGNED:Among 100 admissions, compared with physician HCs, residents edited a smaller percentage of LLM HCs (LLM mean [SD], 31.5% [16.6%] vs physicians, 44.8% [20.0%]; P < .001). Additionally, LLM HCs required less semantic change (LLM mean [SD], 2.4% [1.6%] vs physicians, 4.9% [3.5%]; P < .001). Attending physicians deemed LLM HCs to be more complete (mean [SD] difference LLM vs physicians on 10-point bidirectional scale, 3.00 [5.28]; P < .001), similarly concise (mean [SD], -1.02 [6.08]; P = .20), and cohesive (mean [SD], 0.70 [6.14]; P = .60), but with more confabulations (mean [SD], -0.98 [3.53]; P = .002). The composite scores were similar (mean [SD] difference LLM vs physician on 40-point bidirectional scale, 1.70 [14.24]; P = .46). CONCLUSIONS AND RELEVANCE/UNASSIGNED:Electronic health record-embedded LLM HCs required less editing than physician-generated HCs to approach a quality standard, resulting in HCs that were comparably or more complete, concise, and cohesive, but contained more confabulations. Despite the potential influence of artificial time constraints, this study supports the feasibility of a physician-LLM partnership for writing HCs and provides a basis for monitoring LLM HCs in clinical practice.
PMID: 40802185
ISSN: 2574-3805
CID: 5906762

Reference Ranges for All: Implementing Reference Ranges for Transgender and Nonbinary Patients [Case Report]

Cardillo, Anthony B; Chen, Dan; Haghi, Nina; O'Donnell, Luke; Jhang, Jeffrey; Testa, Paul A; Genes, Nicholas
OBJECTIVES/OBJECTIVE: This study aimed to highlight the necessity of developing and implementing appropriate reference ranges for transgender and nonbinary (TGNB) patient populations to minimize misinterpretation of laboratory results and ensure equitable health care. CASE REPORT/METHODS: We describe a situation where a TGNB patient's abnormal laboratory values were not flagged due to undefined reference ranges for gender "X" in the Laboratory Information System (LIS). Implementation of additional reference ranges mapped to sex label "X" showed significant improvement in flagging abnormal lab results, utilizing sex-invariant reporting as an interim solution while monitoring developments on TGNB-specific reference ranges. CONCLUSION/CONCLUSIONS: Informatics professionals should assess their institution's policies for registration and lab reporting on TGNB patients as nonimplementation poses significant patient safety risks. Best practices include using TGNB-specific reference ranges emerging in the literature, reporting both male and female reference ranges for clinical interpretation and sex-invariant reporting.
PMCID:11655151
PMID: 39694068
ISSN: 1869-0327
CID: 5764552

Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study

Petrilli, Christopher M; Jones, Simon A; Yang, Jie; Rajagopalan, Harish; O'Donnell, Luke; Chernyak, Yelena; Tobin, Katie A; Cerfolio, Robert J; Francois, Fritz; Horwitz, Leora I
OBJECTIVE:To describe outcomes of people admitted to hospital with coronavirus disease 2019 (covid-19) in the United States, and the clinical and laboratory characteristics associated with severity of illness. DESIGN/METHODS:Prospective cohort study. SETTING/METHODS:Single academic medical center in New York City and Long Island. PARTICIPANTS/METHODS:5279 patients with laboratory confirmed severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection between 1 March 2020 and 8 April 2020. The final date of follow up was 5 May 2020. MAIN OUTCOME MEASURES/METHODS:Outcomes were admission to hospital, critical illness (intensive care, mechanical ventilation, discharge to hospice care, or death), and discharge to hospice care or death. Predictors included patient characteristics, medical history, vital signs, and laboratory results. Multivariable logistic regression was conducted to identify risk factors for adverse outcomes, and competing risk survival analysis for mortality. RESULTS:Of 11 544 people tested for SARS-Cov-2, 5566 (48.2%) were positive. After exclusions, 5279 were included. 2741 of these 5279 (51.9%) were admitted to hospital, of whom 1904 (69.5%) were discharged alive without hospice care and 665 (24.3%) were discharged to hospice care or died. Of 647 (23.6%) patients requiring mechanical ventilation, 391 (60.4%) died and 170 (26.2%) were extubated or discharged. The strongest risk for hospital admission was associated with age, with an odds ratio of >2 for all age groups older than 44 years and 37.9 (95% confidence interval 26.1 to 56.0) for ages 75 years and older. Other risks were heart failure (4.4, 2.6 to 8.0), male sex (2.8, 2.4 to 3.2), chronic kidney disease (2.6, 1.9 to 3.6), and any increase in body mass index (BMI) (eg, for BMI >40: 2.5, 1.8 to 3.4). The strongest risks for critical illness besides age were associated with heart failure (1.9, 1.4 to 2.5), BMI >40 (1.5, 1.0 to 2.2), and male sex (1.5, 1.3 to 1.8). Admission oxygen saturation of <88% (3.7, 2.8 to 4.8), troponin level >1 (4.8, 2.1 to 10.9), C reactive protein level >200 (5.1, 2.8 to 9.2), and D-dimer level >2500 (3.9, 2.6 to 6.0) were, however, more strongly associated with critical illness than age or comorbidities. Risk of critical illness decreased significantly over the study period. Similar associations were found for mortality alone. CONCLUSIONS:Age and comorbidities were found to be strong predictors of hospital admission and to a lesser extent of critical illness and mortality in people with covid-19; however, impairment of oxygen on admission and markers of inflammation were most strongly associated with critical illness and mortality. Outcomes seem to be improving over time, potentially suggesting improvements in care.
PMID: 32444366
ISSN: 1756-1833
CID: 4447142