Searched for: in-biosketch:yes/1000
person:pirona01
Sex-dependent gastrointestinal colonization resistance to MRSA is microbiota and Th17 dependent
Lejeune, Alannah; Zhou, Chunyi; Ercelen, Defne; Putzel, Gregory; Yao, Xiaomin; Guy, Alyson R; Pawline, Miranda; Podkowik, Magdalena; Pironti, Alejandro; Torres, Victor J; Shopsin, Bo; Cadwell, Ken
Gastrointestinal (GI) colonization by methicillin-resistant Staphylococcus aureus (MRSA) is associated with a high risk of transmission and invasive disease in vulnerable populations. The immune and microbial factors that permit GI colonization remain unknown. Male sex is correlated with enhanced Staphylococcus aureus nasal carriage, skin and soft tissue infections, and bacterial sepsis. Here, we established a mouse model of sexual dimorphism during GI colonization by MRSA. Our results show that in contrast to male mice that were susceptible to persistent colonization, female mice rapidly cleared MRSA from the GI tract following oral inoculation in a manner dependent on the gut microbiota. This colonization resistance displayed by female mice was mediated by an increase in IL-17A+ CD4+ T cells (Th17) and dependent on neutrophils. Ovariectomy of female mice increased MRSA burden, but gonadal female mice that have the Y chromosome retained enhanced Th17 responses and colonization resistance. Our study reveals a novel intersection between sex and gut microbiota underlying colonization resistance against a major widespread pathogen.
PMID: 40197396
ISSN: 2050-084x
CID: 5823732
Enterobacter hormaechei replaces virulence with carbapenem resistance via porin loss
Perault, Andrew I; John, Amelia St; DuMont, Ashley L; Shopsin, Bo; Pironti, Alejandro; Torres, Victor J
Pathogenic Enterobacter species are of increasing clinical concern due to the multidrug-resistant nature of these bacteria, including resistance to carbapenem antibiotics. Our understanding of Enterobacter virulence is limited, hindering the development of new prophylactics and therapeutics targeting infections caused by Enterobacter species. In this study, we assessed the virulence of contemporary clinical Enterobacter hormaechei isolates in a mouse model of intraperitoneal infection and used comparative genomics to identify genes promoting virulence. Through mutagenesis and complementation studies, we found two porin-encoding genes, ompC and ompD, to be required for E. hormaechei virulence. These porins imported clinically relevant carbapenems into the bacteria, and thus loss of OmpC and OmpD desensitized E. hormaechei to the antibiotics. Our genomic analyses suggest porin-related genes are frequently mutated in E. hormaechei, perhaps due to the selective pressure of antibiotic therapy during infection. Despite the importance of OmpC and OmpD during infection of immunocompetent hosts, we found the two porins to be dispensable for virulence in a neutropenic mouse model. Moreover, porin loss provided a fitness advantage during carbapenem treatment in an ex vivo human whole blood model of bacteremia. Our data provide experimental evidence of pathogenic Enterobacter species gaining antibiotic resistance via loss of porins and argue antibiotic therapy during infection of immunocompromised patients is a conducive environment for the selection of porin mutations enhancing the multidrug-resistant profile of these pathogens.
PMCID:11874173
PMID: 39977318
ISSN: 1091-6490
CID: 5809602
Identification of a depupylation regulator for an essential enzyme in Mycobacterium tuberculosis
Kahne, Shoshanna C; Yoo, Jin Hee; Chen, James; Nakedi, Kehilwe; Iyer, Lakshminarayan M; Putzel, Gregory; Samhadaneh, Nora M; Pironti, Alejandro; Aravind, L; Ekiert, Damian C; Bhabha, Gira; Rhee, Kyu Y; Darwin, K Heran
In Mycobacterium tuberculosis (Mtb), proteins that are posttranslationally modified with a prokaryotic ubiquitin-like protein (Pup) can be degraded by bacterial proteasomes. A single Pup-ligase and depupylase shape the pupylome, but the mechanisms regulating their substrate specificity are incompletely understood. Here, we identified a depupylation regulator, a protein called CoaX, through its copurification with the depupylase Dop. CoaX is a pseudopantothenate kinase that showed evidence of binding to pantothenate, an essential nutrient Mtb synthesizes, but not its phosphorylation. In a ∆coaX mutant, pantothenate synthesis enzymes including PanB, a substrate of the Pup-proteasome system (PPS), were more abundant than in the parental strain. In vitro, CoaX specifically accelerated depupylation of Pup~PanB, while addition of pantothenate inhibited this reaction. In culture, media supplementation with pantothenate decreased PanB levels, which required CoaX. Collectively, we propose CoaX regulates PanB abundance in response to pantothenate levels by modulating its vulnerability to proteolysis by Mtb proteasomes.
PMID: 39585979
ISSN: 1091-6490
CID: 5763462
An integrated strain-level analytic pipeline utilizing longitudinal metagenomic data
Zhou, Boyan; Wang, Chan; Putzel, Gregory; Hu, Jiyuan; Liu, Menghan; Wu, Fen; Chen, Yu; Pironti, Alejandro; Li, Huilin
UNLABELLED:With the development of sequencing technology and analytic tools, studying within-species variations enhances the understanding of microbial biological processes. Nevertheless, most existing methods designed for strain-level analysis lack the capability to concurrently assess both strain proportions and genome-wide single nucleotide variants (SNVs) across longitudinal metagenomic samples. In this study, we introduce LongStrain, an integrated pipeline for the analysis of large-scale metagenomic data from individuals with longitudinal or repeated samples. In LongStrain, we first utilize two efficient tools, Kraken2 and Bowtie2, for the taxonomic classification and alignment of sequencing reads, respectively. Subsequently, we propose to jointly model strain proportions and shared haplotypes across samples within individuals. This approach specifically targets tracking a primary strain and a secondary strain for each subject, providing their respective proportions and SNVs as output. With extensive simulation studies of a microbial community and single species, our results demonstrate that LongStrain is superior to two genotyping methods and two deconvolution methods across a majority of scenarios. Furthermore, we illustrate the potential applications of LongStrain in the real data analysis of The Environmental Determinants of Diabetes in the Young study and a gastric intestinal metaplasia microbiome study. In summary, the proposed analytic pipeline demonstrates marked statistical efficiency over the same type of methods and has great potential in understanding the genomic variants and dynamic changes at strain level. LongStrain and its tutorial are freely available online at https://github.com/BoyanZhou/LongStrain. IMPORTANCE/OBJECTIVE:The advancement in DNA-sequencing technology has enabled the high-resolution identification of microorganisms in microbial communities. Since different microbial strains within species may contain extreme phenotypic variability (e.g., nutrition metabolism, antibiotic resistance, and pathogen virulence), investigating within-species variations holds great scientific promise in understanding the underlying mechanism of microbial biological processes. To fully utilize the shared genomic variants across longitudinal metagenomics samples collected in microbiome studies, we develop an integrated analytic pipeline (LongStrain) for longitudinal metagenomics data. It concurrently leverages the information on proportions of mapped reads for individual strains and genome-wide SNVs to enhance the efficiency and accuracy of strain identification. Our method helps to understand strains' dynamic changes and their association with genome-wide variants. Given the fast-growing longitudinal studies of microbial communities, LongStrain which streamlines analyses of large-scale raw sequencing data should be of great value in microbiome research communities.
PMID: 39311770
ISSN: 2165-0497
CID: 5738712
SARS-CoV-2 infection predisposes patients to coinfection with Staphylococcus aureus
Lubkin, Ashira; Bernard-Raichon, Lucie; DuMont, Ashley L; Valero Jimenez, Ana Mayela; Putzel, Gregory G; Gago, Juan; Zwack, Erin E; Olusanya, Olufolakemi; Boguslawski, Kristina M; Dallari, Simone; Dyzenhaus, Sophie; Herrmann, Christin; Ilmain, Juliana K; Isom, Georgia L; Pawline, Miranda; Perault, Andrew I; Perelman, Sofya; Sause, William E; Shahi, Ifrah; St John, Amelia; Tierce, Rebecca; Zheng, Xuhui; Zhou, Chunyi; Noval, Maria G; O'Keeffe, Anna; Podkowik, Magda; Gonzales, Sandra; Inglima, Kenneth; Desvignes, Ludovic; Hochman, Sarah E; Stapleford, Kenneth A; Thorpe, Lorna E; Pironti, Alejandro; Shopsin, Bo; Cadwell, Ken; Dittmann, Meike; Torres, Victor J
UNLABELLED:isolates with low intrinsic virulence. IMPORTANCE/OBJECTIVE:infection.
PMCID:11323729
PMID: 39037272
ISSN: 2150-7511
CID: 5695982
Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress
Podkowik, Magdalena; Perault, Andrew I; Putzel, Gregory; Pountain, Andrew; Kim, Jisun; DuMont, Ashley L; Zwack, Erin E; Ulrich, Robert J; Karagounis, Theodora K; Zhou, Chunyi; Haag, Andreas F; Shenderovich, Julia; Wasserman, Gregory A; Kwon, Junbeom; Chen, John; Richardson, Anthony R; Weiser, Jeffrey N; Nowosad, Carla R; Lun, Desmond S; Parker, Dane; Pironti, Alejandro; Zhao, Xilin; Drlica, Karl; Yanai, Itai; Torres, Victor J; Shopsin, Bo
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb
PMID: 38687677
ISSN: 2050-084x
CID: 5729302
Staphylococcus aureus senses human neutrophils via PerR to coordinate the expression of the toxin LukAB
Savin, Avital; Anderson, Exene E; Dyzenhaus, Sophie; Podkowik, Magdalena; Shopsin, Bo; Pironti, Alejandro; Torres, Victor J
PMCID:10863418
PMID: 38235972
ISSN: 1098-5522
CID: 5635242
Unlatching of the stem domains in the Staphylococcus aureus pore-forming leukocidin LukAB influences toxin oligomerization
Ilmain, Juliana K; Perelman, Sofya S; Panepinto, Maria C; Irnov, Irnov; Coudray, Nicolas; Samhadaneh, Nora; Pironti, Alejandro; Ueberheide, Beatrix; Ekiert, Damian C; Bhabha, Gira; Torres, Victor J
Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases. S. aureus utilizes a family of pore-forming toxins, known as bi-component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A/leukocidin B), a toxin that assembles into an octameric β-barrel pore in the target cell membrane, resulting in host cell death. The established cellular receptor for LukAB is CD11b of the Mac-1 complex. Here, we show that hydrogen voltage-gated channel 1 is also required for the cytotoxicity of all major LukAB variants. We demonstrate that while each receptor is sufficient to recruit LukAB to the plasma membrane, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contributes to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow LukAB to maintain cytotoxicity without CD11b. We discovered 30 mutations primarily localized in the stem domains of LukA and LukB that enable LukAB to exhibit full cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting, we show these mutations increase the solvent accessibility of the stem domain, priming LukAB for oligomerization. Together, our data support a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization.
PMCID:10665946
PMID: 37802313
ISSN: 1083-351x
CID: 5614202
Longitudinal gut microbiome analyses and blooms of pathogenic strains during lupus disease flares
Azzouz, Doua F; Chen, Ze; Izmirly, Peter M; Chen, Lea Ann; Li, Zhi; Zhang, Chongda; Mieles, David; Trujillo, Kate; Heguy, Adriana; Pironti, Alejandro; Putzel, Greg G; Schwudke, Dominik; Fenyo, David; Buyon, Jill P; Alekseyenko, Alexander V; Gisch, Nicolas; Silverman, Gregg J
OBJECTIVE:Whereas genetic susceptibility for systemic lupus erythematosus (SLE) has been well explored, the triggers for clinical disease flares remain elusive. To investigate relationships between microbiota community resilience and disease activity, we performed the first longitudinal analyses of lupus gut-microbiota communities. METHODS:In an observational study, taxononomic analyses, including multivariate analysis of ß-diversity, assessed time-dependent alterations in faecal communities from patients and healthy controls. From gut blooms, strains were isolated, with genomes and associated glycans analysed. RESULTS:(RG) occurred at times of high-disease activity, and were detected in almost half of patients during lupus nephritis (LN) disease flares. Whole genome sequence analysis of RG strains isolated during these flares documented 34 genes postulated to aid adaptation and expansion within a host with an inflammatory condition. Yet, the most specific feature of strains found during lupus flares was the common expression of a novel type of cell membrane-associated lipoglycan. These lipoglycans share conserved structural features documented by mass spectroscopy, and highly immunogenic repetitive antigenic-determinants, recognised by high-level serum IgG2 antibodies, that spontaneously arose, concurrent with RG blooms and lupus flares. CONCLUSIONS:Our findings rationalise how blooms of the RG pathobiont may be common drivers of clinical flares of often remitting-relapsing lupus disease, and highlight the potential pathogenic properties of specific strains isolated from active LN patients.
PMID: 37365013
ISSN: 1468-2060
CID: 5540152
Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization
Jang, Kyung Ku; Heaney, Thomas; London, Mariya; Ding, Yi; Putzel, Gregory; Yeung, Frank; Ercelen, Defne; Chen, Ying-Han; Axelrad, Jordan; Gurunathan, Sakteesh; Zhou, Chaoting; Podkowik, Magdalena; Arguelles, Natalia; Srivastava, Anusha; Shopsin, Bo; Torres, Victor J; Keestra-Gounder, A Marijke; Pironti, Alejandro; Griffin, Matthew E; Hang, Howard C; Cadwell, Ken
Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium (Efm) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA that generates NOD2-stimulating muropeptides. NOD2 activation in myeloid cells induced interleukin-1β (IL-1β) secretion to increase the proportion of IL-22-producing CD4+ T helper cells and innate lymphoid cells that promote tissue repair. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.
PMID: 37652008
ISSN: 1934-6069
CID: 5618182