Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:ahnj06

Total Results:

120


Oral Microbiome and Subsequent Risk of Head and Neck Squamous Cell Cancer

Kwak, Soyoung; Wang, Chan; Usyk, Mykhaylo; Wu, Feng; Freedman, Neal D; Huang, Wen-Yi; McCullough, Marjorie L; Um, Caroline Y; Shrubsole, Martha J; Cai, Qiuyin; Li, Huilin; Ahn, Jiyoung; Hayes, Richard B
IMPORTANCE/UNASSIGNED:The oral microbiota may be involved in development of head and neck squamous cell cancer (HNSCC), yet current evidence is largely limited to bacterial 16S amplicon sequencing or small retrospective case-control studies. OBJECTIVE/UNASSIGNED:To test whether oral bacterial and fungal microbiomes are associated with subsequent risk of HNSCC development. DESIGN, SETTING, AND PARTICIPANTS/UNASSIGNED:Prospective nested case-control study among participants providing oral samples in 3 epidemiological cohorts, the American Cancer Society Cancer Prevention Study II Nutrition Cohort, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, and the Southern Community Cohort Study. Two hundred thirty-six patients who prospectively developed HNSCC were identified during a mean (SD) of 5.1 (3.6) years of follow-up. Control participants who remained HNSCC free were selected by 2:1 frequency matching on cohort, age, sex, race and ethnicity, and time since oral sample collection. Data analysis was conducted in 2023. EXPOSURES/UNASSIGNED:Characterization of the oral bacterial microbiome using whole-genome shotgun sequencing and the oral fungal microbiome using internal transcribed spacer sequencing. Association of bacterial and fungal taxa with HNSCC was assessed by analysis of compositions of microbiomes with bias correction. Association with red and orange oral pathogen complexes was tested by logistic regression. A microbial risk score for HNSCC risk was calculated from risk-associated microbiota. MAIN OUTCOMES AND MEASURES/UNASSIGNED:The primary outcome was HNSCC incidence. RESULTS/UNASSIGNED:The study included 236 HNSCC case participants with a mean (SD) age of 60.9 (9.5) years and 24.6% women during a mean of 5.1 (3.6) years of follow-up, and 485 matched control participants. Overall microbiome diversity at baseline was not related to subsequent HNSCC risk; however 13 oral bacterial species were found to be differentially associated with development of HNSCC. The species included the newly identified Prevotella salivae, Streptococcus sanguinis, and Leptotrichia species, as well as several species belonging to beta and gamma Proteobacteria. The red/orange periodontal pathogen complex was moderately associated with HNSCC risk (odds ratio, 1.06 per 1 SD; 95% CI, 1.00-1.12). A 1-SD increase in microbial risk score (created based on 22 bacteria) was associated with a 50% increase in HNSCC risk (multivariate odds ratio, 1.50; 95% CI, 1.21-1.85). No fungal taxa associated with HNSCC risk were identified. CONCLUSIONS AND RELEVANCE/UNASSIGNED:This case-control study yielded compelling evidence that oral bacteria are a risk factor for HNSCC development. The identified bacteria and bacterial complexes hold promise, along with other risk factors, to identify high-risk individuals for personalized prevention of HNSCC.
PMCID:11428028
PMID: 39325441
ISSN: 2374-2445
CID: 5738752

Altered salivary microbiota associated with high-sugar beverage consumption

Fan, Xiaozhou; Monson, Kelsey R; Peters, Brandilyn A; Whittington, Jennifer M; Um, Caroline Y; Oberstein, Paul E; McCullough, Marjorie L; Freedman, Neal D; Huang, Wen-Yi; Ahn, Jiyoung; Hayes, Richard B
The human oral microbiome may alter oral and systemic disease risk. Consuming high sugar content beverages (HSB) can lead to caries development by altering the microbial composition in dental plaque, but little is known regarding HSB-specific oral microbial alterations. Therefore, we conducted a large, population-based study to examine associations of HSB intake with oral microbiome diversity and composition. Using mouthwash samples of 989 individuals in two nationwide U.S. cohorts, bacterial 16S rRNA genes were amplified, sequenced, and assigned to bacterial taxa. HSB intake was quantified from food frequency questionnaires as low (< 1 serving/week), medium (1-3 servings/week), or high (> 3 servings/week). We assessed overall bacterial diversity and presence of specific taxa with respect to HSB intake in each cohort separately and combined in a meta-analysis. Consistently in the two cohorts, we found lower species richness in high HSB consumers (> 3 cans/week) (p = 0.027), and that overall bacterial community profiles differed from those of non-consumers (PERMANOVA p = 0.040). Specifically, presence of a network of commensal bacteria (Lachnospiraceae, Peptostreptococcaceae, and Alloprevotella rava) was less common in high compared to non-consumers, as were other species including Campylobacter showae, Prevotella oulorum, and Mycoplasma faucium. Presence of acidogenic bacteria Bifodobacteriaceae and Lactobacillus rhamnosus was more common in high consumers. Abundance of Fusobacteriales and its genus Leptotrichia, Lachnoanaerobaculum sp., and Campylobacter were lower with higher HSB consumption, and their abundances were correlated. No significant interaction was found for these associations with diabetic status or with microbial markers for caries (S. mutans) and periodontitis (P. gingivalis). Our results suggest that soft drink intake may alter the salivary microbiota, with consistent results across two independent cohorts. The observed perturbations of overrepresented acidogenic bacteria and underrepresented commensal bacteria in high HSB consumers may have implications for oral and systemic disease risk.
PMCID:11167035
PMID: 38862651
ISSN: 2045-2322
CID: 5669042

Gut microbiome is associated with recurrence-free survival in patients with resected Stage IIIB-D or Stage IV melanoma treated with immune checkpoint inhibitors

Usyk, Mykhaylo; Hayes, Richard B; Knight, Rob; Gonzalez, Antonio; Li, Huilin; Osman, Iman; Weber, Jeffrey S; Ahn, Jiyoung
The gut microbiome (GMB) has been associated with outcomes of immune checkpoint blockade therapy in melanoma, but there is limited consensus on the specific taxa involved, particularly across different geographic regions. We analyzed pre-treatment stool samples from 674 melanoma patients participating in a phase-III trial of adjuvant nivolumab plus ipilimumab versus nivolumab, across three continents and five regions. Longitudinal analysis revealed that GMB was largely unchanged following treatment, offering promise for lasting GMB-based interventions. In region-specific and cross-region meta-analyses, we identified pre-treatment taxonomic markers associated with recurrence, including Eubacterium, Ruminococcus, Firmicutes, and Clostridium. Recurrence prediction by these markers was best achieved across regions by matching participants on GMB compositional similarity between the intra-regional discovery and external validation sets. AUCs for prediction ranged from 0.83-0.94 (depending on the initial discovery region) for patients closely matched on GMB composition (e.g., JSD ≤0.11). This evidence indicates that taxonomic markers for prediction of recurrence are generalizable across regions, for individuals of similar GMB composition.
PMCID:11042335
PMID: 38659744
ISSN: 2692-8205
CID: 5738492

Sociobiome - Individual and neighborhood socioeconomic status influence the gut microbiome in a multi-ethnic population in the US

Kwak, Soyoung; Usyk, Mykhaylo; Beggs, Dia; Choi, Heesun; Ahdoot, Dariush; Wu, Feng; Maceda, Lorraine; Li, Huilin; Im, Eun-Ok; Han, Hae-Ra; Lee, Eunjung; Wu, Anna H; Hayes, Richard B; Ahn, Jiyoung
Lower socioeconomic status (SES) is related to increased incidence and mortality due to chronic diseases in adults. Association between SES variables and gut microbiome variation has been observed in adults at the population level, suggesting that biological mechanisms may underlie the SES associations; however, there is a need for larger studies that consider individual- and neighborhood-level measures of SES in racially diverse populations. In 825 participants from a multi-ethnic cohort, we investigated how SES shapes the gut microbiome. We determined the relationship of a range of individual- and neighborhood-level SES indicators with the gut microbiome. Individual education level and occupation were self-reported by questionnaire. Geocoding was applied to link participants' addresses with neighborhood census tract socioeconomic indicators, including average income and social deprivation in the census tract. Gut microbiome was measured using 16SV4 region rRNA gene sequencing of stool samples. We compared α-diversity, β-diversity, and taxonomic and functional pathway abundance by SES. Lower SES was significantly associated with greater α-diversity and compositional differences among groups, as measured by β-diversity. Several taxa related to low SES were identified, especially an increasing abundance of Prevotella copri and Catenibacterium sp000437715, and decreasing abundance of Dysosmobacter welbionis in terms of their high log-fold change differences. In addition, nativity and race/ethnicity have emerged as ecosocial factors that also influence the gut microbiota. Together, these results showed that lower SES was strongly associated with compositional and taxonomic measures of the gut microbiome, and may contribute to shaping the gut microbiota.
PMID: 38467678
ISSN: 2055-5008
CID: 5645682

A microbial causal mediation analytic tool for health disparity and applications in body mass index

Wang, Chan; Ahn, Jiyoung; Tarpey, Thaddeus; Yi, Stella S; Hayes, Richard B; Li, Huilin
BACKGROUND:Emerging evidence suggests the potential mediating role of microbiome in health disparities. However, no analytic framework can be directly used to analyze microbiome as a mediator between health disparity and clinical outcome, due to the non-manipulable nature of the exposure and the unique structure of microbiome data, including high dimensionality, sparsity, and compositionality. METHODS:Considering the modifiable and quantitative features of the microbiome, we propose a microbial causal mediation model framework, SparseMCMM_HD, to uncover the mediating role of microbiome in health disparities, by depicting a plausible path from a non-manipulable exposure (e.g., ethnicity or region) to the outcome through the microbiome. The proposed SparseMCMM_HD rigorously defines and quantifies the manipulable disparity measure that would be eliminated by equalizing microbiome profiles between comparison and reference groups and innovatively and successfully extends the existing microbial mediation methods, which are originally proposed under potential outcome or counterfactual outcome study design, to address health disparities. RESULTS:Through three body mass index (BMI) studies selected from the curatedMetagenomicData 3.4.2 package and the American gut project: China vs. USA, China vs. UK, and Asian or Pacific Islander (API) vs. Caucasian, we exhibit the utility of the proposed SparseMCMM_HD framework for investigating the microbiome's contributions in health disparities. Specifically, BMI exhibits disparities and microbial community diversities are significantly distinctive between reference and comparison groups in all three applications. By employing SparseMCMM_HD, we illustrate that microbiome plays a crucial role in explaining the disparities in BMI between ethnicities or regions. 20.63%, 33.09%, and 25.71% of the overall disparity in BMI in China-USA, China-UK, and API-Caucasian comparisons, respectively, would be eliminated if the between-group microbiome profiles were equalized; and 15, 18, and 16 species are identified to play the mediating role respectively. CONCLUSIONS:The proposed SparseMCMM_HD is an effective and validated tool to elucidate the mediating role of microbiome in health disparity. Three BMI applications shed light on the utility of microbiome in reducing BMI disparity by manipulating microbial profiles. Video Abstract.
PMID: 37496080
ISSN: 2049-2618
CID: 5592392

Sociobiome - Individual and neighborhood socioeconomic status influence the gut microbiome in a multi-ethnic population in the US

Ahn, Jiyoung; Kwak, Soyoung; Usyk, Mykhaylo; Beggs, Dia; Choi, Heesun; Ahdoot, Dariush; Wu, Feng; Maceda, Lorraine; Li, Huilin; Im, Eun-Ok; Han, Hae-Ra; Lee, Eunjung; Wu, Anna; Hayes, Richard
Lower socioeconomic status (SES) is related to increased incidence and mortality due to chronic diseases in adults. Association between SES variables and gut microbiome variation has been observed in adults at the population level, suggesting that biological mechanisms may underlie the SES associations; however, there is a need for larger U.S. studies that consider individual- and neighborhood-level measures of SES in racially diverse populations. In 825 participants from a multi-ethnic cohort, we investigated how SES shapes the gut microbiome. We determined the relationship of a range of several individual- and neighborhood-level SES indicators with the gut microbiome. Individual education level and occupation were self-reported by questionnaire. Geocoding was applied to link participants' addresses with neighborhood census tract socioeconomic indicators, including average income and social deprivation in the census tract. Gut microbiome was measured using 16SV4 region rRNA gene sequencing of stool samples. We compared α-diversity, β-diversity, and taxonomic and functional pathway abundance by socioeconomic status. Lower SES was significantly associated with greater α-diversity and compositional differences among groups, as measured by β-diversity. Several taxa related to low SES were identified, especially an increasing abundance of Genus Catenibacterium and Prevotella copri. The significant association between SES and gut microbiota remained even after considering the race/ethnicity in this racially diverse cohort. Together, these results showed that lower socioeconomic status was strongly associated with compositional and taxonomic measures of the gut microbiome, suggesting that SES may shape the gut microbiota.
PMID: 37131763
ISSN: 2693-5015
CID: 5738092

Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study

Lim, Soo; Sohn, Minji; Florez, Jose C; Nauck, Michael A; Ahn, Jiyoung
The efficacy and safety of medications can be affected by alterations in gut microbiota in human beings. Among antidiabetic medications, incretin-based therapy such as dipeptidyl peptidase 4 inhibitors might affect gut microbiomes, which are related to glucose metabolism. This was a randomized, controlled, active-competitor study that aimed to compare the effects of combinations of gemigliptin-metformin vs. glimepiride-metformin as initial therapies on gut microbiota and glucose homeostasis in drug-naïve patients with type 2 diabetes. Seventy drug-naïve patients with type 2 diabetes (mean age, 52.2 years) with a glycated hemoglobin (HbA1c) level ≥7.5% were assigned to either gemigliptin-metformin or glimepiride-metformin combination therapies for 24 weeks. Changes in gut microbiota, biomarkers linked to glucose regulation, body composition, and amino acid blood levels were investigated. Although both treatments decreased the HbA1c levels significantly, the gemigliptin-metformin group achieved HbA1c ≤ 7.0% without hypoglycemia or weight gain more effectively than did the glimepiride-metformin group (59% vs. 24%; p &lt; 0.05). At the phylum level, the Firmicutes/Bacteroidetes ratio tended to decrease after gemigliptin-metformin therapy (p = 0.065), with a notable depletion of taxa belonging to Firmicutes, including Lactobacillus, Ruminococcus torques, and Streptococcus (all p &lt; 0.05). However, regardless of the treatment modality, a distinct difference in the overall gut microbiome composition was noted between patients who reached the HbA1c target goal and those who did not (p &lt; 0.001). Treatment with gemigliptin-metformin resulted in a higher achievement of the glycemic target without hypoglycemia or weight gain, better than with glimepiride-metformin; these improvements might be related to beneficial changes in gut microbiota.
PMCID:9824054
PMID: 36615904
ISSN: 2072-6643
CID: 5410262

Grain, Gluten, and Dietary Fiber Intake Influence Gut Microbial Diversity: Data from the Food and Microbiome Longitudinal Investigation

Um, Caroline Y; Peters, Brandilyn A; Choi, Hee Sun; Oberstein, Paul; Beggs, Dia B; Usyk, Mykhaylo; Wu, Feng; Hayes, Richard B; Gapstur, Susan M; McCullough, Marjorie L; Ahn, Jiyoung
UNLABELLED:< 0.05). These findings suggest that whole grain and dietary fiber are associated with overall gut microbiome structure, largely fiber-fermenting microbiota. Higher refined grain and gluten intakes may be associated with lower microbial diversity. SIGNIFICANCE:Regular consumption of whole grains and dietary fiber was associated with greater abundance of gut bacteria that may lower risk of colorectal cancer. Further research on the association of refined grains and gluten with gut microbial composition is needed to understand their roles in health and disease.
PMCID:10035461
PMID: 36968219
ISSN: 2767-9764
CID: 5594522

Elevated dietary carbohydrate and glycemic intake associate with an altered oral microbial ecosystem in two large U.S. cohorts

Monson, Kelsey R; Peters, Brandilyn A; Usyk, Mykhaylo; Um, Caroline Y; Oberstein, Paul E; McCullough, Marjorie L; Purdue, Mark P; Freedman, Neal D; Hayes, Richard B; Ahn, Jiyoung
The human oral microbiome is associated with chronic diseases including cancer. However, our understanding of its relationship with diet is limited. We assessed the associations between carbohydrate and glycemic index (GI) with oral microbiome composition in 834 non-diabetic subjects from the NCI-PLCO and ACS-CPSII cohorts. The oral microbiome was characterized using 16Sv3-4 rRNA-sequencing from oral mouthwash samples. Daily carbohydrate and GI were assessed from food frequency questionnaires. We used linear regression, permutational MANOVA, and negative binomial Generalized Linear Models (GLM) to test associations of diet with α- and β-diversity and taxon abundance (adjusting for age, sex, cohort, BMI, smoking, caloric intake, and alcohol). A q-value (FDR-adjusted P-value) of <0.05 was considered significant. Oral bacterial α-diversity trended higher in participants in the highest quintiles of carbohydrate intake, with marginally increased richness and Shannon diversity (p-trend=0.06 and 0.07). Greater carbohydrate intake was associated with greater abundance of class Fusobacteriia (q=0.02) and genus Leptotrichia (q=0.01) and with lesser abundance of an Actinomyces OTU (q=4.7E-04). Higher GI was significantly related to greater abundance of genus Gemella (q=0.001). This large, nationwide study provides evidence that diets high in carbohydrates and GI may influence the oral microbiome.
PMCID:9770587
PMID: 36567732
ISSN: 2767-9764
CID: 5592052

The lung microbiome, peripheral gene expression, and recurrence-free survival after resection of stage II non-small cell lung cancer

Peters, Brandilyn A; Pass, Harvey I; Burk, Robert D; Xue, Xiaonan; Goparaju, Chandra; Sollecito, Christopher C; Grassi, Evan; Segal, Leopoldo N; Tsay, Jun-Chieh J; Hayes, Richard B; Ahn, Jiyoung
BACKGROUND:Cancer recurrence after tumor resection in early-stage non-small cell lung cancer (NSCLC) is common, yet difficult to predict. The lung microbiota and systemic immunity may be important modulators of risk for lung cancer recurrence, yet biomarkers from the lung microbiome and peripheral immune environment are understudied. Such markers may hold promise for prediction as well as improved etiologic understanding of lung cancer recurrence. METHODS:In tumor and distant normal lung samples from 46 stage II NSCLC patients with curative resection (39 tumor samples, 41 normal lung samples), we conducted 16S rRNA gene sequencing. We also measured peripheral blood immune gene expression with nanoString®. We examined associations of lung microbiota and peripheral gene expression with recurrence-free survival (RFS) and disease-free survival (DFS) using 500 × 10-fold cross-validated elastic-net penalized Cox regression, and examined predictive accuracy using time-dependent receiver operating characteristic (ROC) curves. RESULTS:Over a median of 4.8 years of follow-up (range 0.2-12.2 years), 43% of patients experienced a recurrence, and 50% died. In normal lung tissue, a higher abundance of classes Bacteroidia and Clostridia, and orders Bacteroidales and Clostridiales, were associated with worse RFS, while a higher abundance of classes Alphaproteobacteria and Betaproteobacteria, and orders Burkholderiales and Neisseriales, were associated with better RFS. In tumor tissue, a higher abundance of orders Actinomycetales and Pseudomonadales were associated with worse DFS. Among these taxa, normal lung Clostridiales and Bacteroidales were also related to worse survival in a previous small pilot study and an additional independent validation cohort. In peripheral blood, higher expression of genes TAP1, TAPBP, CSF2RB, and IFITM2 were associated with better DFS. Analysis of ROC curves revealed that lung microbiome and peripheral gene expression biomarkers provided significant additional recurrence risk discrimination over standard demographic and clinical covariates, with microbiome biomarkers contributing more to short-term (1-year) prediction and gene biomarkers contributing to longer-term (2-5-year) prediction. CONCLUSIONS:We identified compelling biomarkers in under-explored data types, the lung microbiome, and peripheral blood gene expression, which may improve risk prediction of recurrence in early-stage NSCLC patients. These findings will require validation in a larger cohort.
PMCID:9609265
PMID: 36303210
ISSN: 1756-994x
CID: 5358192