Searched for: in-biosketch:yes
person:ahnj06
Association of tumor microbiome with survival in resected early-stage PDAC
Meng, Yixuan; Wang, Chan; Usyk, Mykhaylo; Kwak, Soyoung; Peng, Chengwei; Hu, Kenneth S; Oberstein, Paul E; Krogsgaard, Michelle; Li, Huilin; Hayes, Richard B; Ahn, Jiyoung
The pancreas tumor microbiota may influence tumor microenvironment and influence survival in early-stage pancreatic ductal adenocarcinoma (PDAC); however, current studies are limited and small. We investigated the relationship of tumor microbiota to survival in 201 surgically resected patients with localized PDAC (Stages I-II), from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts. We characterized the tumor microbiome using RNA-sequencing data. We examined the association of the tumor microbiome with overall survival (OS), via meta-analysis with the Cox PH model. A microbial risk score (MRS) was calculated from the OS-associated microbiota. We further explored whether the OS-associated microbiota is related to host tumor immune infiltration. PDAC tumor microbiome α- and β-diversities were not associated with OS; however, 11 bacterial species, including species of Gammaproteobacteria, confirmed by extensive resampling, were significantly associated with OS (all Q < 0.05). The MRS summarizing these bacteria was related to a threefold change in OS (hazard ratio = 2.96 per standard deviation change in the MRS, 95% confidence interval = 2.26-3.86). This result was consistent across the two cohorts and in stratified analyses by adjuvant therapy (chemotherapy/radiation). Identified microbiota and the MRS also exhibited association with memory B cells and naïve CD4+ T cells, which may be related to the immune landscape through BCR and TCR signaling pathways. Our study shows that a unique tumor microbiome structure, potentially affecting the tumor immune microenvironment, is associated with poorer survival in resected early-stage PDAC. These findings suggest that microbial mechanisms may be involved in PDAC survival, potentially informing PDAC prognosis and guiding personalized treatment strategies.IMPORTANCEMuch of the available data on the PDAC tumor microbiome and survival are derived from relatively small and heterogeneous studies, including those involving patients with advanced stages of pancreatic cancer. There is a critical knowledge gap in terms of the tumor microbiome and survival in early-stage patients treated by surgical resection; we expect that advancements in survival may initially be best achieved in these patients who are treated with curative intent.
PMID: 40013793
ISSN: 2379-5077
CID: 5801172
Increasing Colorectal Cancer Screening in an Urban Black Community: A Pilot Randomized Clinical Trial of Multilevel Interventions
Shaukat, Aasma; Das, Taranika Sarkar; Shahin, George; Hayes, Richard; Ahn, Jiyoung
PMID: 39630401
ISSN: 1573-2568
CID: 5804452
Oral Microbiome and Subsequent Risk of Head and Neck Squamous Cell Cancer
Kwak, Soyoung; Wang, Chan; Usyk, Mykhaylo; Wu, Feng; Freedman, Neal D; Huang, Wen-Yi; McCullough, Marjorie L; Um, Caroline Y; Shrubsole, Martha J; Cai, Qiuyin; Li, Huilin; Ahn, Jiyoung; Hayes, Richard B
IMPORTANCE/UNASSIGNED:The oral microbiota may be involved in development of head and neck squamous cell cancer (HNSCC), yet current evidence is largely limited to bacterial 16S amplicon sequencing or small retrospective case-control studies. OBJECTIVE/UNASSIGNED:To test whether oral bacterial and fungal microbiomes are associated with subsequent risk of HNSCC development. DESIGN, SETTING, AND PARTICIPANTS/UNASSIGNED:Prospective nested case-control study among participants providing oral samples in 3 epidemiological cohorts, the American Cancer Society Cancer Prevention Study II Nutrition Cohort, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, and the Southern Community Cohort Study. Two hundred thirty-six patients who prospectively developed HNSCC were identified during a mean (SD) of 5.1 (3.6) years of follow-up. Control participants who remained HNSCC free were selected by 2:1 frequency matching on cohort, age, sex, race and ethnicity, and time since oral sample collection. Data analysis was conducted in 2023. EXPOSURES/UNASSIGNED:Characterization of the oral bacterial microbiome using whole-genome shotgun sequencing and the oral fungal microbiome using internal transcribed spacer sequencing. Association of bacterial and fungal taxa with HNSCC was assessed by analysis of compositions of microbiomes with bias correction. Association with red and orange oral pathogen complexes was tested by logistic regression. A microbial risk score for HNSCC risk was calculated from risk-associated microbiota. MAIN OUTCOMES AND MEASURES/UNASSIGNED:The primary outcome was HNSCC incidence. RESULTS/UNASSIGNED:The study included 236 HNSCC case participants with a mean (SD) age of 60.9 (9.5) years and 24.6% women during a mean of 5.1 (3.6) years of follow-up, and 485 matched control participants. Overall microbiome diversity at baseline was not related to subsequent HNSCC risk; however 13 oral bacterial species were found to be differentially associated with development of HNSCC. The species included the newly identified Prevotella salivae, Streptococcus sanguinis, and Leptotrichia species, as well as several species belonging to beta and gamma Proteobacteria. The red/orange periodontal pathogen complex was moderately associated with HNSCC risk (odds ratio, 1.06 per 1 SD; 95% CI, 1.00-1.12). A 1-SD increase in microbial risk score (created based on 22 bacteria) was associated with a 50% increase in HNSCC risk (multivariate odds ratio, 1.50; 95% CI, 1.21-1.85). No fungal taxa associated with HNSCC risk were identified. CONCLUSIONS AND RELEVANCE/UNASSIGNED:This case-control study yielded compelling evidence that oral bacteria are a risk factor for HNSCC development. The identified bacteria and bacterial complexes hold promise, along with other risk factors, to identify high-risk individuals for personalized prevention of HNSCC.
PMCID:11428028
PMID: 39325441
ISSN: 2374-2445
CID: 5738752
Altered salivary microbiota associated with high-sugar beverage consumption
Fan, Xiaozhou; Monson, Kelsey R; Peters, Brandilyn A; Whittington, Jennifer M; Um, Caroline Y; Oberstein, Paul E; McCullough, Marjorie L; Freedman, Neal D; Huang, Wen-Yi; Ahn, Jiyoung; Hayes, Richard B
The human oral microbiome may alter oral and systemic disease risk. Consuming high sugar content beverages (HSB) can lead to caries development by altering the microbial composition in dental plaque, but little is known regarding HSB-specific oral microbial alterations. Therefore, we conducted a large, population-based study to examine associations of HSB intake with oral microbiome diversity and composition. Using mouthwash samples of 989 individuals in two nationwide U.S. cohorts, bacterial 16S rRNA genes were amplified, sequenced, and assigned to bacterial taxa. HSB intake was quantified from food frequency questionnaires as low (< 1 serving/week), medium (1-3 servings/week), or high (> 3 servings/week). We assessed overall bacterial diversity and presence of specific taxa with respect to HSB intake in each cohort separately and combined in a meta-analysis. Consistently in the two cohorts, we found lower species richness in high HSB consumers (> 3 cans/week) (p = 0.027), and that overall bacterial community profiles differed from those of non-consumers (PERMANOVA p = 0.040). Specifically, presence of a network of commensal bacteria (Lachnospiraceae, Peptostreptococcaceae, and Alloprevotella rava) was less common in high compared to non-consumers, as were other species including Campylobacter showae, Prevotella oulorum, and Mycoplasma faucium. Presence of acidogenic bacteria Bifodobacteriaceae and Lactobacillus rhamnosus was more common in high consumers. Abundance of Fusobacteriales and its genus Leptotrichia, Lachnoanaerobaculum sp., and Campylobacter were lower with higher HSB consumption, and their abundances were correlated. No significant interaction was found for these associations with diabetic status or with microbial markers for caries (S. mutans) and periodontitis (P. gingivalis). Our results suggest that soft drink intake may alter the salivary microbiota, with consistent results across two independent cohorts. The observed perturbations of overrepresented acidogenic bacteria and underrepresented commensal bacteria in high HSB consumers may have implications for oral and systemic disease risk.
PMCID:11167035
PMID: 38862651
ISSN: 2045-2322
CID: 5669042
Gut microbiome is associated with recurrence-free survival in patients with resected Stage IIIB-D or Stage IV melanoma treated with immune checkpoint inhibitors
Usyk, Mykhaylo; Hayes, Richard B; Knight, Rob; Gonzalez, Antonio; Li, Huilin; Osman, Iman; Weber, Jeffrey S; Ahn, Jiyoung
The gut microbiome (GMB) has been associated with outcomes of immune checkpoint blockade therapy in melanoma, but there is limited consensus on the specific taxa involved, particularly across different geographic regions. We analyzed pre-treatment stool samples from 674 melanoma patients participating in a phase-III trial of adjuvant nivolumab plus ipilimumab versus nivolumab, across three continents and five regions. Longitudinal analysis revealed that GMB was largely unchanged following treatment, offering promise for lasting GMB-based interventions. In region-specific and cross-region meta-analyses, we identified pre-treatment taxonomic markers associated with recurrence, including Eubacterium, Ruminococcus, Firmicutes, and Clostridium. Recurrence prediction by these markers was best achieved across regions by matching participants on GMB compositional similarity between the intra-regional discovery and external validation sets. AUCs for prediction ranged from 0.83-0.94 (depending on the initial discovery region) for patients closely matched on GMB composition (e.g., JSD ≤0.11). This evidence indicates that taxonomic markers for prediction of recurrence are generalizable across regions, for individuals of similar GMB composition.
PMCID:11042335
PMID: 38659744
ISSN: 2692-8205
CID: 5738492
Sociobiome - Individual and neighborhood socioeconomic status influence the gut microbiome in a multi-ethnic population in the US
Kwak, Soyoung; Usyk, Mykhaylo; Beggs, Dia; Choi, Heesun; Ahdoot, Dariush; Wu, Feng; Maceda, Lorraine; Li, Huilin; Im, Eun-Ok; Han, Hae-Ra; Lee, Eunjung; Wu, Anna H; Hayes, Richard B; Ahn, Jiyoung
Lower socioeconomic status (SES) is related to increased incidence and mortality due to chronic diseases in adults. Association between SES variables and gut microbiome variation has been observed in adults at the population level, suggesting that biological mechanisms may underlie the SES associations; however, there is a need for larger studies that consider individual- and neighborhood-level measures of SES in racially diverse populations. In 825 participants from a multi-ethnic cohort, we investigated how SES shapes the gut microbiome. We determined the relationship of a range of individual- and neighborhood-level SES indicators with the gut microbiome. Individual education level and occupation were self-reported by questionnaire. Geocoding was applied to link participants' addresses with neighborhood census tract socioeconomic indicators, including average income and social deprivation in the census tract. Gut microbiome was measured using 16SV4 region rRNA gene sequencing of stool samples. We compared α-diversity, β-diversity, and taxonomic and functional pathway abundance by SES. Lower SES was significantly associated with greater α-diversity and compositional differences among groups, as measured by β-diversity. Several taxa related to low SES were identified, especially an increasing abundance of Prevotella copri and Catenibacterium sp000437715, and decreasing abundance of Dysosmobacter welbionis in terms of their high log-fold change differences. In addition, nativity and race/ethnicity have emerged as ecosocial factors that also influence the gut microbiota. Together, these results showed that lower SES was strongly associated with compositional and taxonomic measures of the gut microbiome, and may contribute to shaping the gut microbiota.
PMID: 38467678
ISSN: 2055-5008
CID: 5645682
A microbial causal mediation analytic tool for health disparity and applications in body mass index
Wang, Chan; Ahn, Jiyoung; Tarpey, Thaddeus; Yi, Stella S; Hayes, Richard B; Li, Huilin
BACKGROUND:Emerging evidence suggests the potential mediating role of microbiome in health disparities. However, no analytic framework can be directly used to analyze microbiome as a mediator between health disparity and clinical outcome, due to the non-manipulable nature of the exposure and the unique structure of microbiome data, including high dimensionality, sparsity, and compositionality. METHODS:Considering the modifiable and quantitative features of the microbiome, we propose a microbial causal mediation model framework, SparseMCMM_HD, to uncover the mediating role of microbiome in health disparities, by depicting a plausible path from a non-manipulable exposure (e.g., ethnicity or region) to the outcome through the microbiome. The proposed SparseMCMM_HD rigorously defines and quantifies the manipulable disparity measure that would be eliminated by equalizing microbiome profiles between comparison and reference groups and innovatively and successfully extends the existing microbial mediation methods, which are originally proposed under potential outcome or counterfactual outcome study design, to address health disparities. RESULTS:Through three body mass index (BMI) studies selected from the curatedMetagenomicData 3.4.2 package and the American gut project: China vs. USA, China vs. UK, and Asian or Pacific Islander (API) vs. Caucasian, we exhibit the utility of the proposed SparseMCMM_HD framework for investigating the microbiome's contributions in health disparities. Specifically, BMI exhibits disparities and microbial community diversities are significantly distinctive between reference and comparison groups in all three applications. By employing SparseMCMM_HD, we illustrate that microbiome plays a crucial role in explaining the disparities in BMI between ethnicities or regions. 20.63%, 33.09%, and 25.71% of the overall disparity in BMI in China-USA, China-UK, and API-Caucasian comparisons, respectively, would be eliminated if the between-group microbiome profiles were equalized; and 15, 18, and 16 species are identified to play the mediating role respectively. CONCLUSIONS:The proposed SparseMCMM_HD is an effective and validated tool to elucidate the mediating role of microbiome in health disparity. Three BMI applications shed light on the utility of microbiome in reducing BMI disparity by manipulating microbial profiles. Video Abstract.
PMID: 37496080
ISSN: 2049-2618
CID: 5592392
Sociobiome - Individual and neighborhood socioeconomic status influence the gut microbiome in a multi-ethnic population in the US
Ahn, Jiyoung; Kwak, Soyoung; Usyk, Mykhaylo; Beggs, Dia; Choi, Heesun; Ahdoot, Dariush; Wu, Feng; Maceda, Lorraine; Li, Huilin; Im, Eun-Ok; Han, Hae-Ra; Lee, Eunjung; Wu, Anna; Hayes, Richard
Lower socioeconomic status (SES) is related to increased incidence and mortality due to chronic diseases in adults. Association between SES variables and gut microbiome variation has been observed in adults at the population level, suggesting that biological mechanisms may underlie the SES associations; however, there is a need for larger U.S. studies that consider individual- and neighborhood-level measures of SES in racially diverse populations. In 825 participants from a multi-ethnic cohort, we investigated how SES shapes the gut microbiome. We determined the relationship of a range of several individual- and neighborhood-level SES indicators with the gut microbiome. Individual education level and occupation were self-reported by questionnaire. Geocoding was applied to link participants' addresses with neighborhood census tract socioeconomic indicators, including average income and social deprivation in the census tract. Gut microbiome was measured using 16SV4 region rRNA gene sequencing of stool samples. We compared α-diversity, β-diversity, and taxonomic and functional pathway abundance by socioeconomic status. Lower SES was significantly associated with greater α-diversity and compositional differences among groups, as measured by β-diversity. Several taxa related to low SES were identified, especially an increasing abundance of Genus Catenibacterium and Prevotella copri. The significant association between SES and gut microbiota remained even after considering the race/ethnicity in this racially diverse cohort. Together, these results showed that lower socioeconomic status was strongly associated with compositional and taxonomic measures of the gut microbiome, suggesting that SES may shape the gut microbiota.
PMID: 37131763
ISSN: 2693-5015
CID: 5738092
Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study
Lim, Soo; Sohn, Minji; Florez, Jose C; Nauck, Michael A; Ahn, Jiyoung
The efficacy and safety of medications can be affected by alterations in gut microbiota in human beings. Among antidiabetic medications, incretin-based therapy such as dipeptidyl peptidase 4 inhibitors might affect gut microbiomes, which are related to glucose metabolism. This was a randomized, controlled, active-competitor study that aimed to compare the effects of combinations of gemigliptin-metformin vs. glimepiride-metformin as initial therapies on gut microbiota and glucose homeostasis in drug-naïve patients with type 2 diabetes. Seventy drug-naïve patients with type 2 diabetes (mean age, 52.2 years) with a glycated hemoglobin (HbA1c) level ≥7.5% were assigned to either gemigliptin-metformin or glimepiride-metformin combination therapies for 24 weeks. Changes in gut microbiota, biomarkers linked to glucose regulation, body composition, and amino acid blood levels were investigated. Although both treatments decreased the HbA1c levels significantly, the gemigliptin-metformin group achieved HbA1c ≤ 7.0% without hypoglycemia or weight gain more effectively than did the glimepiride-metformin group (59% vs. 24%; p < 0.05). At the phylum level, the Firmicutes/Bacteroidetes ratio tended to decrease after gemigliptin-metformin therapy (p = 0.065), with a notable depletion of taxa belonging to Firmicutes, including Lactobacillus, Ruminococcus torques, and Streptococcus (all p < 0.05). However, regardless of the treatment modality, a distinct difference in the overall gut microbiome composition was noted between patients who reached the HbA1c target goal and those who did not (p < 0.001). Treatment with gemigliptin-metformin resulted in a higher achievement of the glycemic target without hypoglycemia or weight gain, better than with glimepiride-metformin; these improvements might be related to beneficial changes in gut microbiota.
PMCID:9824054
PMID: 36615904
ISSN: 2072-6643
CID: 5410262
Grain, Gluten, and Dietary Fiber Intake Influence Gut Microbial Diversity: Data from the Food and Microbiome Longitudinal Investigation
Um, Caroline Y; Peters, Brandilyn A; Choi, Hee Sun; Oberstein, Paul; Beggs, Dia B; Usyk, Mykhaylo; Wu, Feng; Hayes, Richard B; Gapstur, Susan M; McCullough, Marjorie L; Ahn, Jiyoung
UNLABELLED:< 0.05). These findings suggest that whole grain and dietary fiber are associated with overall gut microbiome structure, largely fiber-fermenting microbiota. Higher refined grain and gluten intakes may be associated with lower microbial diversity. SIGNIFICANCE:Regular consumption of whole grains and dietary fiber was associated with greater abundance of gut bacteria that may lower risk of colorectal cancer. Further research on the association of refined grains and gluten with gut microbial composition is needed to understand their roles in health and disease.
PMCID:10035461
PMID: 36968219
ISSN: 2767-9764
CID: 5594522