Searched for: in-biosketch:yes
person:cadwek01
Goblet cell loss linked to NOD2 and secondary resection in Crohn's disease is induced by dysbiosis and epithelial MyD88
Wong, Serre-Yu; Estevinho, Maria Manuela; Heaney, Thomas; Marshall, Allison A; Giselbrecht, Elisabeth; Daniel, Scott G; Zhou, Chaoting; Rosas-Villegas, Adriana; Jang, Kyung Ku; Yang, Hairu; Mabel Ko, Huaibin; Paulson, John D; Ding, Yi; Bittinger, Kyle; Cho, Judy H; Lewis, James D; Ramanan, Deepshika; Cadwell, Ken
BACKGROUND & AIMS/OBJECTIVE:The role of goblet cells in small intestinal inflammation in Crohn's disease is unknown. Polymorphisms of NOD2 confer risk for Crohn's disease (CD) and associate with small intestinal disease location. We previously showed in mice that Nod2 deficiency leads to overexpansion of Phocaeicola vulgatus in the gut and downstream goblet cell defects, which preceded small intestinal inflammation. In this study, we ask whether goblet cell defects occur in CD patients with NOD2 polymorphisms and investigate in mice how P. vulgatus signals through the intestinal epithelium. METHODS:We performed a retrospective study of patients with CD to assess clinical outcomes and goblet cell histology by NOD2 status. We evaluated the contribution of microbiota and MyD88 signaling in the intestinal epithelium to goblet cell defects in the setting of Nod2 deficiency using genetic mouse models and germ-free mice. RESULTS:mice harboring P. vulgatus. Finally, we show that P. vulgatus requires complex microbiota to exert its effects in Nod2-deficient mice. CONCLUSIONS:Goblet cell defects may be a harbinger of small intestinal inflammation in CD patients, particularly in the postoperative setting. Our findings in mice show that small intestinal goblet cell loss associated with Nod2 mutation is induced by microbiome dysbiosis and epithelial MyD88, in part due to TLR4 signaling.
PMID: 40378921
ISSN: 2352-345x
CID: 5844802
Heterozygosity for Crohn's disease risk allele of ATG16L1 promotes unique protein interactions and protects against bacterial infection
Yao, Xiaomin; Rudensky, Eugene; Martin, Patricia K; Miller, Brittany M; Vargas, Isabel; Zwack, Erin E; Lacey, Keenan A; He, Zhengxiang; Furtado, Glaucia C; Lira, Sérgio A; Torres, Victor J; Shopsin, Bo; Cadwell, Ken
The T300A substitution in ATG16L1 associated with Crohn's disease impairs autophagy, yet up to 50% of humans are heterozygous for this allele. Here, we demonstrate that heterozygosity for the analogous substitution in mice (Atg16L1T316A), but not homozygosity, protects against lethal Salmonella enterica Typhimurium infection. One copy of Atg16L1T316A was sufficient to enhance cytokine production through inflammasome activation, which was necessary for protection. In contrast, two copies of Atg16L1T316A inhibited the autophagy-related process of LC3-associated phagocytosis (LAP) and increased susceptibility. Macrophages from human donors heterozygous for ATG16L1T300A displayed elevated inflammasome activation while homozygosity impaired LAP, similar to mice. These results clarify how the T300A substitution impacts ATG16L1 function and suggest it can be beneficial to heterozygous carriers, providing an explanation for its prevalence within the human population.
PMID: 40373771
ISSN: 1097-4180
CID: 5844632
Sex-dependent gastrointestinal colonization resistance to MRSA is microbiota and Th17 dependent
Lejeune, Alannah; Zhou, Chunyi; Ercelen, Defne; Putzel, Gregory; Yao, Xiaomin; Guy, Alyson R; Pawline, Miranda; Podkowik, Magdalena; Pironti, Alejandro; Torres, Victor J; Shopsin, Bo; Cadwell, Ken
Gastrointestinal (GI) colonization by methicillin-resistant Staphylococcus aureus (MRSA) is associated with a high risk of transmission and invasive disease in vulnerable populations. The immune and microbial factors that permit GI colonization remain unknown. Male sex is correlated with enhanced Staphylococcus aureus nasal carriage, skin and soft tissue infections, and bacterial sepsis. Here, we established a mouse model of sexual dimorphism during GI colonization by MRSA. Our results show that in contrast to male mice that were susceptible to persistent colonization, female mice rapidly cleared MRSA from the GI tract following oral inoculation in a manner dependent on the gut microbiota. This colonization resistance displayed by female mice was mediated by an increase in IL-17A+ CD4+ T cells (Th17) and dependent on neutrophils. Ovariectomy of female mice increased MRSA burden, but gonadal female mice that have the Y chromosome retained enhanced Th17 responses and colonization resistance. Our study reveals a novel intersection between sex and gut microbiota underlying colonization resistance against a major widespread pathogen.
PMID: 40197396
ISSN: 2050-084x
CID: 5823732
Rewilding catalyzes maturation of the humoral immune system
Chen, Ying-Han; Zaldana, Kimberly; Yeung, Frank; Vujkovic-Cvijin, Ivan; Downie, Alexander E; Lin, Jian-Da; Yang, Yi; Herrmann, Christin; Oyesola, Oyebola; Rozenberg, Felix; Schwartz, Robert E; Kim, David; Tio, Kurt; Belkaid, Yasmine; Loke, P'ng; Graham, Andrea L; Koralov, Sergei B; Cadwell, Ken
Inbred mice used for biomedical research display an underdeveloped immune system compared with adult humans, which is attributed in part to the artificial laboratory environment. Despite representing a central component of adaptive immunity, the impact of the laboratory environment on the B cell compartment has not been investigated in detail. Here, we performed an in-depth examination of B cells following rewilding, the controlled release of inbred laboratory mice into an outdoor enclosure. In rewilded mice, we observed B cells in circulation with increased signs of maturation, alongside heightened germinal center responses within secondary lymphoid organs. Rewilding also expanded B cells in the gut, which was accompanied by elevated systemic levels of immunoglobulin G (IgG) and IgM antibodies reactive to the microbiota. Our findings indicate that exposing laboratory mice to a more natural environment enhances B cell development to better reflect the immune system of free-living mammals.
PMCID:11887799
PMID: 40053586
ISSN: 2375-2548
CID: 5809942
Tofacitinib Uptake by Patient-Derived Intestinal Organoids Predicts Individual Clinical Responsiveness
Jang, Kyung Ku; Hudesman, David; Jones, Drew R; Loke, P'ng; Axelrad, Jordan E; Cadwell, Ken; ,
PMID: 39094749
ISSN: 1528-0012
CID: 5731612
SARS-CoV-2 infection predisposes patients to coinfection with Staphylococcus aureus
Lubkin, Ashira; Bernard-Raichon, Lucie; DuMont, Ashley L; Valero Jimenez, Ana Mayela; Putzel, Gregory G; Gago, Juan; Zwack, Erin E; Olusanya, Olufolakemi; Boguslawski, Kristina M; Dallari, Simone; Dyzenhaus, Sophie; Herrmann, Christin; Ilmain, Juliana K; Isom, Georgia L; Pawline, Miranda; Perault, Andrew I; Perelman, Sofya; Sause, William E; Shahi, Ifrah; St John, Amelia; Tierce, Rebecca; Zheng, Xuhui; Zhou, Chunyi; Noval, Maria G; O'Keeffe, Anna; Podkowik, Magda; Gonzales, Sandra; Inglima, Kenneth; Desvignes, Ludovic; Hochman, Sarah E; Stapleford, Kenneth A; Thorpe, Lorna E; Pironti, Alejandro; Shopsin, Bo; Cadwell, Ken; Dittmann, Meike; Torres, Victor J
UNLABELLED:isolates with low intrinsic virulence. IMPORTANCE/OBJECTIVE:infection.
PMCID:11323729
PMID: 39037272
ISSN: 2150-7511
CID: 5695982
Genetic and environmental interactions contribute to immune variation in rewilded mice
Oyesola, Oyebola; Downie, Alexander E; Howard, Nina; Barre, Ramya S; Kiwanuka, Kasalina; Zaldana, Kimberly; Chen, Ying-Han; Menezes, Arthur; Lee, Soo Ching; Devlin, Joseph; Mondragón-Palomino, Octavio; Souza, Camila Oliveira Silva; Herrmann, Christin; Koralov, Sergei B; Cadwell, Ken; Graham, Andrea L; Loke, P'ng
The relative and synergistic contributions of genetics and environment to interindividual immune response variation remain unclear, despite implications in evolutionary biology and medicine. Here we quantify interactive effects of genotype and environment on immune traits by investigating C57BL/6, 129S1 and PWK/PhJ inbred mice, rewilded in an outdoor enclosure and infected with the parasite Trichuris muris. Whereas cellular composition was shaped by interactions between genotype and environment, cytokine response heterogeneity including IFNγ concentrations was primarily driven by genotype with consequence on worm burden. In addition, we show that other traits, such as expression of CD44, were explained mostly by genetics on T cells, whereas expression of CD44 on B cells was explained more by environment across all strains. Notably, genetic differences under laboratory conditions were decreased following rewilding. These results indicate that nonheritable influences interact with genetic factors to shape immune variation and parasite burden.
PMID: 38877178
ISSN: 1529-2916
CID: 5669602
Functional characterization of helminth-associated Clostridiales reveals covariates of Treg differentiation
Sargsian, Shushan; Mondragón-Palomino, Octavio; Lejeune, Alannah; Ercelen, Defne; Jin, Wen-Bing; Varghese, Alan; Lim, Yvonne A L; Guo, Chun-Jun; Loke, P'ng; Cadwell, Ken
BACKGROUND:Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS:Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION/CONCLUSIONS:We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.
PMID: 38730492
ISSN: 2049-2618
CID: 5656072
SHORT CHAIN FATTY ACIDS MITIGATE OSTEOCLAST-MEDIATED ARTHRITIC BONE REMODELLING
Yang, Katharine Lu; Mullins, Briana J; Lejeune, Alannah; Ivanova, Ellie; Shin, Jong; Bajwa, Sofia; Possemato, Richard; Cadwell, Ken; Scher, Jose U; Koralov, Sergei B
OBJECTIVE:To study the effects of Short Chain Fatty Acids (SCFAs) on arthritic bone remodeling. METHODS:CD4Cre mice, with SCFA supplemented water. We also performed in vitro osteoclast differentiation assays in the presence of serum-level SCFAs to evaluate the direct impact of these microbial metabolites on maturation and function of osteoclasts. We further characterized the molecular mechanism of SCFAs by transcriptional analysis. RESULTS:CD4Cre mice. Further interrogation revealed that bone marrow derived OCPs from diseased mice expressed a higher level of SCFA receptors than that of control mice and that the progenitor cells in the bone marrow of SCFA-treated mice presented a modified transcriptomic landscape, suggesting a direct impact of SCFAs on bone marrow progenitors in the context of osteoporosis. CONCLUSION/CONCLUSIONS:We demonstrated how gut microbiota-derived SCFAs can regulate distal pathology, i.e., osteoporosis, and identified a potential therapeutic option for restoring bone density in rheumatic disease, further highlighting the critical role of the gut-bone axis in these disorders.
PMID: 37994265
ISSN: 2326-5205
CID: 5608662
S1PR1 inhibition induces proapoptotic signaling in T cells and limits humoral responses within lymph nodes
Dixit, Dhaval; Hallisey, Victoria M; Zhu, Ethan Ys; Okuniewska, Martyna; Cadwell, Ken; Chipuk, Jerry E; Axelrad, Jordan E; Schwab, Susan R
Effective immunity requires a large, diverse naive T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we addressed how S1P enables T cell survival and the implications for patients treated with S1PR1 antagonists. We found that S1PR1 limited apoptosis by maintaining the appropriate balance of BCL2 family members via restraint of JNK activity. Interestingly, the same residues of S1PR1 that enable receptor internalization were required to prevent this proapoptotic cascade. Findings in mice were recapitulated in ulcerative colitis patients treated with the S1PR1 antagonist ozanimod, and the loss of naive T cells limited B cell responses. Our findings highlighted an effect of S1PR1 antagonists on the ability to mount immune responses within lymph nodes, beyond their effect on lymph node egress, and suggested both limitations and additional uses of this important class of drugs.
PMID: 38194271
ISSN: 1558-8238
CID: 5635202