Searched for: in-biosketch:yes
person:choib02
KRas plays a negative role in regulating IDO1 expression
Peng, Xiandong; Lee, Eunji; Liang, Jialu; Colon, Tania; Tran, Franklin; Choi, Byeong H; Dai, Wei
Ras proteins are integral to the mediation of signaling cascades to downstream effectors, regulating a multitude of cellular processes. Mutations within Ras and its associated signaling pathways are implicated in various human pathologies, including inflammatory disorders and malignancies. The immune checkpoint proteins, programmed cell death protein 1 (PD-1) and its ligands PD-L1, along with Indoleamine 2,3-dioxygenase-1 (IDO1), are pivotal in facilitating tumor immune escape. While the influence of oncogenic Ras on PD-L1 expression is extensively documented, the regulatory role of KRas in IDO1 expression remains inadequately understood. In the current study, we demonstrate that IDO1 and PD-L1 expressions are differentially regulated in KRas-mutant cancers. Treatment with the KRasG12C-specific inhibitor, ARS-1620, significantly increased IDO1 expression, which inversely correlated with PD-L1 expression in the KRasG12C-mutant H358 cell line. Notably, IDO1 expression was slightly diminished in KRas-mutant patients with lung and pancreatic ductal adenocarcinomas. Experimental data revealed that IFN-γ induces IDO1 expression; however, this induction is attenuated in the presence of constitutively active KRas. These findings suggest that KRas signaling negatively regulates IDO1 expression while enhancing PD-L1 expression. Moreover, the induction of IDO1 expression following KRas inhibition appears to operate independently of the MAPK pathway. Our results propose that concurrent targeting of KRas and IDO1 could potentiate therapeutic efficacy in KRas-mutant cancers, overcoming resistance to immune checkpoint blockade.
PMID: 39550890
ISSN: 1936-5233
CID: 5757922
Author Correction: Enzyme-independent role of EZH2 in regulating cell cycle progression via the SKP2-KIP/CIP pathway
Colon, Tania; Kou, Ziyue; Choi, Byeong Hyeok; Tran, Franklin; Zheng, Edwin; Dai, Wei
PMID: 39060362
ISSN: 2045-2322
CID: 5696202
Enzyme-independent role of EZH2 in regulating cell cycle progression via the SKP2-KIP/CIP pathway
Colon, Tania; Kou, Ziyue; Choi, Byeong Hyeok; Tran, Franklin; Dai, Wei
While EZH2 enzymatic activity is well-known, emerging evidence suggests that EZH2 can exert functions in a methyltransferase-independent manner. In this study, we have uncovered a novel mechanism by which EZH2 positively regulates the expression of SKP2, a critical protein involved in cell cycle progression. We demonstrate that depletion of EZH2 significantly reduces SKP2 protein levels in several cell types, while treatment with EPZ-6438, an EZH2 enzymatic inhibitor, has no effect on SKP2 protein levels. Consistently, EZH2 depletion leads to cell cycle arrest, accompanied by elevated expression of CIP/KIP family proteins, including p21, p27, and p57, whereas EPZ-6438 treatment does not modulate their levels. We also provide evidence that EZH2 knockdown, but not enzymatic inhibition, suppresses SKP2 mRNA expression, underscoring the transcriptional regulation of SKP2 by EZH2 in a methyltransferase-independent manner. Supporting this, analysis of the Cancer Genome Atlas database reveals a close association between EZH2 and SKP2 expression in human malignancies. Moreover, EZH2 depletion but not enzymatic inhibition positively regulates the expression of major epithelial-mesenchymal transition (EMT) regulators, such as ZEB1 and SNAIL1, in transformed cells. Our findings shed light on a novel mechanism by which EZH2 exerts regulatory effects on cell proliferation and differentiation through its methyltransferase-independent function, specifically by modulating SKP2 expression.
PMCID:11166936
PMID: 38862595
ISSN: 2045-2322
CID: 5669032
AhR signaling modulates Ferroptosis by regulating SLC7A11 expression
Kou, Ziyue; Tran, Franklin; Colon, Tania; Shteynfeld, Yvette; Noh, Suwon; Chen, Fei; Choi, Byeong Hyeok; Dai, Wei
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is pivotal in development, metabolic homeostasis, and immune responses. While recent research has highlighted AhR's significant role in modulating oxidative stress responses, its mechanistic relationship with ferroptosis-an iron-dependent, non-apoptotic cell death-remains to be fully elucidated. In our study, we discovered that AhR plays a crucial role in ferroptosis, in part by transcriptionally regulating the expression of the solute carrier family 7 member 11 (SLC7A11). Our findings indicate that both pharmacological inactivation and genetic ablation of AhR markedly enhance erastin-induced ferroptosis. This enhancement is achieved by suppressing SLC7A11, leading to increased lipid peroxidation. We also obtained evidence of post-translational modifications of SLC7A11 during ferroptosis. Additionally, we observed that indole 3-pyruvate (I3P), an endogenous ligand of AhR, protects cells from ferroptosis through an AhR-dependent mechanism. Based on these insights, we propose that AhR transcriptionally regulates the expression of SLC family genes, which in turn play a pivotal role in mediating ferroptosis. This underscores AhR's essential role in suppressing lipid oxidation and ensuring cell survival under oxidative stress.
PMID: 38641223
ISSN: 1096-0333
CID: 5653962
MicroRNA-Gene Interactions Impacted by Toxic Metal(oid)s during EMT and Carcinogenesis
Tran, Franklin; Lee, Eunji; Cuddapah, Suresh; Choi, Byeong Hyeok; Dai, Wei
Chronic environmental exposure to toxic metal(loid)s significantly contributes to human cancer development and progression. It is estimated that approximately 90% of cancer deaths are a result of metastasis of malignant cells, which is initiated by epithelial-mesenchymal transition (EMT) during early carcinogenesis. EMT is regulated by many families of genes and microRNAs (miRNAs) that control signaling pathways for cell survival, death, and/or differentiation. Recent mechanistic studies have shown that toxic metal(loid)s alter the expression of miRNAs responsible for regulating the expression of genes involved in EMT. Altered miRNA expressions have the potential to be biomarkers for predicting survival and responses to treatment in cancers. Significantly, miRNAs can be developed as therapeutic targets for cancer patients in the clinic. In this mini review, we summarize key findings from recent studies that highlight chemical-miRNA-gene interactions leading to the perturbation of EMT after exposure to toxic metal(loid)s including arsenic, cadmium, nickel, and chromium.
PMCID:9741118
PMID: 36497298
ISSN: 2072-6694
CID: 5381762
Oxidative stress modulates expression of immune checkpoint genes via activation of AhR signaling
Kou, Ziyue; Yang, Rui; Lee, Eunji; Cuddapah, Suresh; Choi, Byeong Hyeok; Dai, Wei
Reactive oxygen species (ROS) are by-products of metabolism of oxygen and they play an important role in normal homeostasis and cell signaling, as well as in the initiation of diseases including cancer when their production is upregulated. Thus, it is imperative to understand the cellular and molecular basis by which ROS impact on various biological and pathological processes. In this report, we show that human keratinocyte cell line (HaCaT) treated with hydrogen peroxide displayed an increased activity of AhR, leading to enhanced expression of its downstream targets including cytochrome P450 genes. Intriguingly, preincubation of the complete culture medium with hydrogen peroxide accelerated AhR activation and its downstream signaling. Subsequent mass spectrometric analysis reveals that the oxidant elicits the production of oxindole, a tryptophan catabolic product. We further demonstrate that 2-oxindole (a major form of oxindole) is capable of activating AhR, strongly suggesting that ROS may exert a significant impact on AhR signaling. Consistent with this, we also observe that hexavalent chromium [Cr(VI)], a heavy metal known to generate ROS in vivo, enhances AhR protein levels, as well as stimulates expression of CYP1A2 in an AhR-dependent manner. Significantly, we show that hydrogen peroxide and 2-oxindole induce expression of IDO1 and PD-L1, two immune checkpoint proteins. Given the role of IDO1 and PD-L1 in mediating T cell activity and/or differentiation, we postulate that ROS in the tumor microenvironment may play a crucial role in immune suppression via perturbing AhR signaling.
PMID: 36368423
ISSN: 1096-0333
CID: 5356602
Ras sumoylation in cell signaling and transformation
Dai, Wei; Xie, Suqing; Chen, Changyan; Choi, Byeong Hyeok
Ras proteins are small GTPases that participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, and differentiation. Mutations or deregulated activities of Ras are frequently the driving force for oncogenic transformation and tumorigenesis. Posttranslational modifications play a crucial role in mediating the stability, activity, or subcellular localization/trafficking of numerous cellular regulators including Ras proteins. A series of recent studies reveal that Ras proteins are also regulated by sumoylation. All three Ras protein isoforms (HRas, KRas, and NRas) are modified by SUMO3. The conserved lysine42 appears to be the primary site for mediating sumoylation. Expression of KRasV12/R42 mutants compromised the activation of the Raf/MEK/ERK signaling axis, leading to a reduced rate of cell migration and invasion in vitro in multiple cell lines. Moreover, treatment of transformed pancreatic cells with a SUMO E2 inhibitor blocks cell migration in a concentration-dependent manner, which is associated with a reduced level of both KRas sumoylation and expression of mesenchymal cell markers. Furthermore, mouse xenograft experiments reveal that expression of a SUMO-resistant mutant appears to suppress tumor development in vivo. Combined, these studies indicate that sumoylation functions as an important mechanism in mediating the roles of Ras in cell proliferation, differentiation, and malignant transformation and that the SUMO-modification system of Ras oncoproteins can be explored as a new druggable target for various human malignancies.
PMID: 33812985
ISSN: 1096-3650
CID: 4862412
CBX8 interacts with chromatin PTEN and is involved in regulating mitotic progression
Choi, Byeong Hyeok; Colon, Tania Marlyn; Lee, Eunji; Kou, Ziyue; Dai, Wei
OBJECTIVES/OBJECTIVE:Besides its role in regulating phosphatidylinositol-3 kinase (PI3K) signalling in the cytosol, PTEN also has a nuclear function. In this study, we attempted to understand the mechanism of chromatin PTEN in suppressing chromosomal instability during cell division. MATERIALS AND METHODS/METHODS:Immunocoprecipitation, ectopic expression, and deletional analyses were used to identify the physical interaction between Chromobox Homolog protein 8 (CBX8) and PTEN, as well as the functional domain(s) of PTEN mediating the interaction. Cell synchronization followed by immunoblotting was employed to study cell cycle regulation of CBX8 and the functional interaction between chromatin PTEN and CBX8. Small interfering RNAs (siRNAs) were used to study the role of PTEN and CBX8 in modulating histone epigenetic markers during the cell cycle. RESULTS:Polycomb group (PcG) proteins including CBXs function to repress gene expression in a wide range of organisms including mammals. We recently showed that PTEN interacted with CBX8, a component of Polycomb Repressing Complex 1 (PRC1), and that CBX8 co-localized with PTEN in the nucleus. CBX8 levels were high, coinciding with its phosphorylation in mitosis. Phosphorylation of CBX8 was associated with monoubiquitinated PTEN and phosphorylated-BubR1 on chromatin. Moreover, CBX8 played an important role in cell proliferation and mitotic progression. Significantly, downregulation of either PTEN or CBX8 induced H3K27Me3 epigenetic marker in mitotic cells. CONCLUSION/CONCLUSIONS:CBX8 is a new component that physically interacts with chromatin PTEN, playing an important role in regulating mitotic progression.
PMCID:8560621
PMID: 34592789
ISSN: 1365-2184
CID: 5045822
Identification of Radil as a Ras binding partner and putative activator
Choi, Byeong Hyeok; Kou, Ziyue; Colon, Tania Marlyn; Chen, Chih-Hong; Chen, Yuan; Dai, Wei
Ras genes are among the most frequently mutated oncogenes in human malignancies. To date, there are no successful anti-cancer drugs in the clinic that target Ras proteins or their pathways. Therefore, it is imperative to identify and characterize new components that regulate Ras activity or mediates its downstream signaling. To this end, we used a combination of affinity-pulldown and mass spectrometry to search for proteins that are physically associated with KRas. One of the top hits was Radil, a gene product with a Ras-association (RA) domain. Radil is known to be a downstream effector of Rap1, inhibiting RhoA signaling to regulate cell adhesion and migration. We demonstrate that Radil interacted with all three isoforms of Ras including HRas, NRas, and KRas, although it exhibited the strongest interaction with KRas. Moreover, Radil interacts with GTP-bound Ras more efficiently, suggesting a possibility that Radil may be involved in Ras activation. Supporting this, ectopic expression of Radil led to transient activation of MEK and ERK; Radil knockdown resulted in weakened activation of Ras downstream signaling components, which was coupled with decreased cell proliferation and invasion, and reduced expression of mesenchymal cell markers. Moreover, Radil knockdown greatly reduced the number of adhesion foci and depolymerized actin filaments, molecular processes that facilitate cancer cell migration. Taken together, our current studies strongly suggest that Radil is an important player for regulating Ras signaling, cell adhesion, and the epithelial-mesenchymal transition, and may provide new directions for Ras-related anti-cancer drug development.
PMCID:7949112
PMID: 33482197
ISSN: 1083-351x
CID: 4875102
K-Ras lysine-42 is crucial for its signaling, cell migration and invasion
Choi, Byeong Hyeok; Philips, Mark R; Chen, Yuan; Lu, Luo; Dai, Wei
Ras proteins participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, and differentiation. We have previously reported that Ras proteins are modified by sumoylation and that lysine-42 (K42) plays an important role in mediating the modification. Â In the current study, we further investigated the role of K42 in regulating cellular activities of K-Ras. Inducible expression of K-RasV12 led to the activation of downstream components including c-RAF, MEK1, and ERKs whereas expression of K-RasV12/R42 mutant compromised the activation of the RAF/MEK/ERK signaling axis. Expression of K-RasV12/R42 also led to reduced phosphorylation of several other protein kinases including JNK, Chk2, and FAK. Significantly, K-RasV12/R42 expression inhibited cellular migration and invasion in vitro in multiple cell lines including transformed pancreatic cells. Given K-Ras plays a crucial role in mediating oncogenesis in pancreas, we treated transformed pancreatic cells of both BxPC-3 and MiaPaCa-2 with 2-D08, an SUMO E2 inhibitor. Treatment with the compound inhibited cell migration in a concentration-dependent manner, which was correlated with a reduced level of K-Ras sumoylation. Moreover, 2-D08 suppressed expression of ZEB1 (a mesenchymal cell marker) with concomitant induction of ZO-1 (an epithelial cell marker). Combined, our studies strongly suggest that post-translational modification(s) including sumoylation mediated by K42 plays a crucial role in K-Ras activities in vivo.
PMID: 30228186
ISSN: 1083-351x
CID: 3301122