Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:choprs02

Total Results:

16


Prostate Cancer Risk Stratification and Scan Tailoring Using Deep Learning on Abbreviated Prostate MRI

Johnson, Patricia M; Dutt, Tarun; Ginocchio, Luke A; Saimbhi, Amanpreet Singh; Umapathy, Lavanya; Block, Kai Tobias; Sodickson, Daniel K; Chopra, Sumit; Tong, Angela; Chandarana, Hersh
BACKGROUND:MRI plays a critical role in prostate cancer (PCa) detection and management. Bi-parametric MRI (bpMRI) offers a faster, contrast-free alternative to multi-parametric MRI (mpMRI). Routine use of mpMRI for all patients may not be necessary, and a tailored imaging approach (bpMRI or mpMRI) based on individual risk might optimize resource utilization. PURPOSE/OBJECTIVE:To develop and evaluate a deep learning (DL) model for classifying clinically significant PCa (csPCa) using bpMRI and to assess its potential for optimizing MRI protocol selection by recommending the additional sequences of mpMRI only when beneficial. STUDY TYPE/METHODS:Retrospective and prospective. POPULATION/METHODS:The DL model was trained and validated on 26,129 prostate MRI studies. A retrospective cohort of 151 patients (mean age 65 ± 8) with ground-truth verification from biopsy, prostatectomy, or long-term follow-up, alongside a prospective cohort of 142 treatment-naïve patients (mean age 65 ± 9) undergoing bpMRI, was evaluated. FIELD STRENGTH/SEQUENCE/UNASSIGNED:3 T, Turbo-spin echo T2-weighted imaging (T2WI) and single shot EPI diffusion-weighted imaging (DWI). ASSESSMENT/RESULTS:The DL model, based on a 3D ResNet-50 architecture, classified csPCa using PI-RADS ≥ 3 and Gleason ≥ 7 as outcome measures. The model was evaluated on a prospective cohort labeled by consensus of three radiologists and a retrospective cohort with ground truth verification based on biopsy or long-term follow-up. Real-time inference was tested on an automated MRI workflow, providing classification results directly at the scanner. STATISTICAL TESTS/METHODS:AUROC with 95% confidence intervals (CI) was used to evaluate model performance. RESULTS:In the prospective cohort, the model achieved an AUC of 0.83 (95% CI: 0.77-0.89) for PI-RADS ≥ 3 classification, with 93% sensitivity and 54% specificity. In the retrospective cohort, the model achieved an AUC of 0.86 (95% CI: 0.80-0.91) for Gleason ≥ 7 classification, with 93% sensitivity and 62% specificity. Real-time implementation demonstrated a processing latency of 14-16 s for protocol recommendations. DATA CONCLUSION/CONCLUSIONS:The proposed DL model identifies csPCa using bpMRI and integrates it into clinical workflows. EVIDENCE LEVEL/METHODS:1. TECHNICAL EFFICACY/UNASSIGNED:Stage 2.
PMID: 40259798
ISSN: 1522-2586
CID: 5830062

Accelerating multi-coil MR image reconstruction using weak supervision

Atalık, Arda; Chopra, Sumit; Sodickson, Daniel K
Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both under-sampled and fully sampled datasets. This paper evaluates a weakly supervised, multi-coil, physics-guided approach to MR image reconstruction, leveraging both dataset types, to improve both the quality and robustness of reconstruction. A physics-guided end-to-end variational network (VarNet) is pretrained in a self-supervised manner using a 4
PMID: 39382814
ISSN: 1352-8661
CID: 5730182

Predicting Risk of Alzheimer's Diseases and Related Dementias with AI Foundation Model on Electronic Health Records

Zhu, Weicheng; Tang, Huanze; Zhang, Hao; Rajamohan, Haresh Rengaraj; Huang, Shih-Lun; Ma, Xinyue; Chaudhari, Ankush; Madaan, Divyam; Almahmoud, Elaf; Chopra, Sumit; Dodson, John A; Brody, Abraham A; Masurkar, Arjun V; Razavian, Narges
Early identification of Alzheimer's disease (AD) and AD-related dementias (ADRD) has high clinical significance, both because of the potential to slow decline through initiating FDA-approved therapies and managing modifiable risk factors, and to help persons living with dementia and their families to plan before cognitive loss makes doing so challenging. However, substantial racial and ethnic disparities in early diagnosis currently lead to additional inequities in care, urging accurate and inclusive risk assessment programs. In this study, we trained an artificial intelligence foundation model to represent the electronic health records (EHR) data with a vast cohort of 1.2 million patients within a large health system. Building upon this foundation EHR model, we developed a predictive Transformer model, named TRADE, capable of identifying risks for AD/ADRD and mild cognitive impairment (MCI), by analyzing the past sequential visit records. Amongst individuals 65 and older, our model was able to generate risk predictions for various future timeframes. On the held-out validation set, our model achieved an area under the receiver operating characteristic (AUROC) of 0.772 (95% CI: 0.770, 0.773) for identifying the AD/ADRD/MCI risks in 1 year, and AUROC of 0.735 (95% CI: 0.734, 0.736) in 5 years. The positive predictive values (PPV) in 5 years among individuals with top 1% and 5% highest estimated risks were 39.2% and 27.8%, respectively. These results demonstrate significant improvements upon the current EHR-based AD/ADRD/MCI risk assessment models, paving the way for better prognosis and management of AD/ADRD/MCI at scale.
PMCID:11071573
PMID: 38712223
CID: 5662732

FastMRI Prostate: A public, biparametric MRI dataset to advance machine learning for prostate cancer imaging

Tibrewala, Radhika; Dutt, Tarun; Tong, Angela; Ginocchio, Luke; Lattanzi, Riccardo; Keerthivasan, Mahesh B; Baete, Steven H; Chopra, Sumit; Lui, Yvonne W; Sodickson, Daniel K; Chandarana, Hersh; Johnson, Patricia M
Magnetic resonance imaging (MRI) has experienced remarkable advancements in the integration of artificial intelligence (AI) for image acquisition and reconstruction. The availability of raw k-space data is crucial for training AI models in such tasks, but public MRI datasets are mostly restricted to DICOM images only. To address this limitation, the fastMRI initiative released brain and knee k-space datasets, which have since seen vigorous use. In May 2023, fastMRI was expanded to include biparametric (T2- and diffusion-weighted) prostate MRI data from a clinical population. Biparametric MRI plays a vital role in the diagnosis and management of prostate cancer. Advances in imaging methods, such as reconstructing under-sampled data from accelerated acquisitions, can improve cost-effectiveness and accessibility of prostate MRI. Raw k-space data, reconstructed images and slice, volume and exam level annotations for likelihood of prostate cancer are provided in this dataset for 47468 slices corresponding to 1560 volumes from 312 patients. This dataset facilitates AI and algorithm development for prostate image reconstruction, with the ultimate goal of enhancing prostate cancer diagnosis.
PMID: 38643291
ISSN: 2052-4463
CID: 5726322

Pancreatic Cystic Lesions: Next Generation of Radiologic Assessment

Huang, Chenchan; Chopra, Sumit; Bolan, Candice W; Chandarana, Hersh; Harfouch, Nassier; Hecht, Elizabeth M; Lo, Grace C; Megibow, Alec J
Pancreatic cystic lesions are frequently identified on cross-sectional imaging. As many of these are presumed branch-duct intraductal papillary mucinous neoplasms, these lesions generate much anxiety for the patients and clinicians, often necessitating long-term follow-up imaging and even unnecessary surgical resections. However, the incidence of pancreatic cancer is overall low for patients with incidental pancreatic cystic lesions. Radiomics and deep learning are advanced tools of imaging analysis that have attracted much attention in addressing this unmet need, however, current publications on this topic show limited success and large-scale research is needed.
PMID: 37245934
ISSN: 1558-1950
CID: 5541852

Radiology Reports Improve Visual Representations Learned from Radiographs

Huang, Haoxu; Rawlekar, Samyak; Chopra, Sumit; Deniz, Cem M
Although human's ability to visually understand the structure of the World plays a crucial role in perceiving the World and making appropriate decisions, human perception does not solely rely on vision but amalgamates the information from acoustic, verbal, and visual stimuli. An active area of research has been revolving around designing an efficient framework that adapts to multiple modalities and ideally improves the performance of existing tasks. While numerous frameworks have proved effective on natural datasets like ImageNet, a limited number of studies have been carried out in the biomedical domain. In this work, we extend the available frameworks for natural data to biomedical data by leveraging the abundant, unstructured multi-modal data available as radiology images and reports. We attempt to answer the question, "For multi-modal learning, self-supervised learning and joint learning using both learning strategies, which one improves the visual representation for downstream chest radiographs classification tasks the most?". Our experiments indicated that in limited labeled data settings with 1% and 10% labeled data, the joint learning with multi-modal and self-supervised models outperforms self-supervised learning and is at par with multi-modal learning. Additionally, we found that multi-modal learning is generally more robust on out-of-distribution datasets. The code is publicly available online.
PMCID:11234265
PMID: 38988725
ISSN: 2640-3498
CID: 5732392

FastMRI Prostate: A Publicly Available, Biparametric MRI Dataset to Advance Machine Learning for Prostate Cancer Imaging

Tibrewala, Radhika; Dutt, Tarun; Tong, Angela; Ginocchio, Luke; Keerthivasan, Mahesh B; Baete, Steven H; Chopra, Sumit; Lui, Yvonne W; Sodickson, Daniel K; Chandarana, Hersh; Johnson, Patricia M
The fastMRI brain and knee dataset has enabled significant advances in exploring reconstruction methods for improving speed and image quality for Magnetic Resonance Imaging (MRI) via novel, clinically relevant reconstruction approaches. In this study, we describe the April 2023 expansion of the fastMRI dataset to include biparametric prostate MRI data acquired on a clinical population. The dataset consists of raw k-space and reconstructed images for T2-weighted and diffusion-weighted sequences along with slice-level labels that indicate the presence and grade of prostate cancer. As has been the case with fastMRI, increasing accessibility to raw prostate MRI data will further facilitate research in MR image reconstruction and evaluation with the larger goal of improving the utility of MRI for prostate cancer detection and evaluation. The dataset is available at https://fastmri.med.nyu.edu.
PMID: 37131871
ISSN: 2331-8422
CID: 5771552

A No-Math Primer on the Principles of Machine Learning for Radiologists

Lee, Matthew D; Elsayed, Mohammed; Chopra, Sumit; Lui, Yvonne W
Machine learning is becoming increasingly important in both research and clinical applications in radiology due to recent technological developments, particularly in deep learning. As these technologies are translated toward clinical practice, there is a need for radiologists and radiology trainees to understand the basic principles behind them. This primer provides an accessible introduction to the vocabulary and concepts that are central to machine learning and relevant to the radiologist.
PMID: 35339253
ISSN: 1558-5034
CID: 5190662

StarSpace: Embed All The Things!

Chapter by: Wu, Ledell; Fisch, Adam; Chopra, Sumit; Adams, Keith; Weston, Antoine Bordes Jason
in: Thirty-second AAAI Conference On Artificial Intelligence / Thirtieth Innovative Applications Of Artificial Intelligence Conference / Eighth AAAI Symposium On Educational Advances In Artificial Intelligence by
pp. 5569-5577
ISBN: 978-1-57735-800-8
CID: 4800332

Computational Television Advertising

Chapter by: Balakrishnan, Suhrid; Chopra, Sumit; Applegate, David; Urbanek, Simon
in: 12TH IEEE International Conference On Data Mining (ICDM 2012) by
pp. 71-80
ISBN: 978-1-4673-4649-8
CID: 4800342