Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:dittmm01

Total Results:

43


Interferon-stimulated gene MCL1 inhibits foot-and-mouth disease virus replication by modulating mitochondrial dynamics and autophagy

Mogulothu, Aishwarya; Hickman, Danielle; Attreed, Sarah; Azzinaro, Paul; Rodriguez-Calzada, Monica; Dittmann, Meike; de Los Santos, Teresa; Szczepanek, Steven; Medina, Gisselle N
Interferons (IFNs) and the IFN-stimulated genes (ISGs) that they induce are effective in reducing the replication of foot and mouth disease virus (FMDV). The use of a high-throughput ISG screen identified the ISG myeloid cell leukemia 1 (MCL1) as an ISG with an antiviral effect against an FMDV replicon system. In this study, we demonstrated that overexpression of MCL1 inhibits FMDV replication by reducing approximately 4 logs of virus titers in porcine cells. We then explored the regulatory pathways associated with MCL1 to determine the specific antiviral mechanisms against FMDV. Our findings indicated that the antiviral mechanism does not involve apoptosis regulation or alterations in cell cycle phase heterogeneity. Analysis of mitochondrial function, through measurement of mitochondrial oxygen consumption rate, demonstrated that overexpression of MCL1 results in increased mitochondrial respiration and ATP production, whereas FMDV infection reduces both processes. Moreover, MCL1 overexpression resulted in elongated mitochondrial morphology, contrasting with the fragmented and punctate morphology observed during FMDV infection. Importantly, these changes in mitochondrial dynamics were independent of MCL1's regulation of mitochondrial calcium flux. We also found that MCL1 overexpression suppresses autophagy, which is known to be necessary for FMDV replication. Our data indicate that MCL1 is a potent antiviral ISG against FMDV and highlight the importance of mitochondrial dynamics and autophagy in FMDV replication.IMPORTANCEIn this study, we have successfully used a high-throughput ISG screening approach to measure the inhibition of FMDV replication using an RNA replicon system for the first time. This screen led to the identification of the potent antiviral effects of a relatively lesser-known ISG called MCL1. Our findings reveal that MCL1 exerts its antiviral functions through the regulation of mitochondrial dynamics and autophagy. Although mitochondrial dynamics are involved in apoptosis, metabolism, redox homeostasis, stress responses, and antiviral signaling, this pathway has not been thoroughly explored in the context of FMDV infection. Further investigation into mitochondrial dynamics may facilitate the development of improved biotherapeutics for FMDV. Additionally, our studies highlight the significance of autophagy, a pathway that is needed by FMDV for replication. Ultimately, a deep understanding of all mechanisms exploited by FMDV may allow for the rational design of novel therapeutics and vaccines to control FMD.
PMID: 40464580
ISSN: 1098-5514
CID: 5862382

lncRNA CARINH regulates expression and function of innate immune transcription factor IRF1 in macrophages

Cyr, Yannick; Gourvest, Morgane; Ciabattoni, Grace O; Zhang, Tracy; Newman, Alexandra Ac; Zahr, Tarik; Delbare, Sofie; Schlamp, Florencia; Dittmann, Meike; Moore, Kathryn J; van Solingen, Coen
The discovery of long non-coding RNAs (lncRNAs) has provided a new perspective on the centrality of RNA in gene regulation and genome organization. Here, we screened for lncRNAs with putative functions in the host response to single-stranded RNA respiratory viruses. We identify CARINH as a conserved cis-acting lncRNA up-regulated in three respiratory diseases to control the expression of its antisense gene IRF1, a key transcriptional regulator of the antiviral response. CARINH and IRF1 are coordinately increased in the circulation of patients infected with human metapneumovirus, influenza A virus, or SARS-CoV-2, and in macrophages in response to viral infection or TLR3 agonist treatment. Targeted depletion of CARINH or its mouse ortholog Carinh in macrophages reduces the expression of IRF1/Irf1 and their associated target gene networks, increasing susceptibility to viral infection. Accordingly, CRISPR-mediated deletion of Carinh in mice reduces antiviral immunity, increasing viral burden upon sublethal challenge with influenza A virus. Together, these findings identify a conserved role of lncRNA CARINH in coordinating interferon-stimulated genes and antiviral immune responses.
PMCID:11707381
PMID: 39773901
ISSN: 2575-1077
CID: 5779322

SARS-CoV-2 infection predisposes patients to coinfection with Staphylococcus aureus

Lubkin, Ashira; Bernard-Raichon, Lucie; DuMont, Ashley L; Valero Jimenez, Ana Mayela; Putzel, Gregory G; Gago, Juan; Zwack, Erin E; Olusanya, Olufolakemi; Boguslawski, Kristina M; Dallari, Simone; Dyzenhaus, Sophie; Herrmann, Christin; Ilmain, Juliana K; Isom, Georgia L; Pawline, Miranda; Perault, Andrew I; Perelman, Sofya; Sause, William E; Shahi, Ifrah; St John, Amelia; Tierce, Rebecca; Zheng, Xuhui; Zhou, Chunyi; Noval, Maria G; O'Keeffe, Anna; Podkowik, Magda; Gonzales, Sandra; Inglima, Kenneth; Desvignes, Ludovic; Hochman, Sarah E; Stapleford, Kenneth A; Thorpe, Lorna E; Pironti, Alejandro; Shopsin, Bo; Cadwell, Ken; Dittmann, Meike; Torres, Victor J
UNLABELLED:isolates with low intrinsic virulence. IMPORTANCE/OBJECTIVE:infection.
PMCID:11323729
PMID: 39037272
ISSN: 2150-7511
CID: 5695982

Generation of quality-controlled SARS-CoV-2 variant stocks

de Vries, Maren; Ciabattoni, Grace O; Rodriguez-Rodriguez, Bruno A; Crosse, Keaton M; Papandrea, Dominick; Samanovic, Marie I; Dimartino, Dacia; Marier, Christian; Mulligan, Mark J; Heguy, Adriana; Desvignes, Ludovic; Duerr, Ralf; Dittmann, Meike
One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.
PMID: 37833423
ISSN: 1750-2799
CID: 5604402

A comparative study of in vitro air-liquid interface culture models of the human airway epithelium evaluating cellular heterogeneity and gene expression at single cell resolution

Prescott, Rachel A; Pankow, Alec P; de Vries, Maren; Crosse, Keaton M; Patel, Roosheel S; Alu, Mark; Loomis, Cynthia; Torres, Victor; Koralov, Sergei; Ivanova, Ellie; Dittmann, Meike; Rosenberg, Brad R
BACKGROUND:The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial (HAE) cultures at air-liquid interface are a physiologically relevant in vitro model of this heterogeneous tissue and have enabled numerous studies of airway disease. HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining the capacity for differentiation to HAE. However, gene expression and innate immune function in BCi-NS1.1-derived versus primary-derived HAE cultures have not been fully characterized. METHODS:BCi-NS1.1-derived HAE cultures (n = 3 independent differentiations) and primary-derived HAE cultures (n = 3 distinct donors) were characterized by immunofluorescence and single cell RNA-Seq (scRNA-Seq). Innate immune functions were evaluated in response to interferon stimulation and to infection with viral and bacterial respiratory pathogens. RESULTS:We confirm at high resolution that BCi-NS1.1- and primary-derived HAE cultures are largely similar in morphology, cell type composition, and overall gene expression patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1-derived HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus. CONCLUSIONS:Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.
PMID: 37635251
ISSN: 1465-993x
CID: 5606922

A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8

Rodriguez-Rodriguez, Bruno A; Ciabattoni, Grace O; Duerr, Ralf; Valero-Jimenez, Ana M; Yeung, Stephen T; Crosse, Keaton M; Schinlever, Austin R; Bernard-Raichon, Lucie; Rodriguez Galvan, Joaquin; McGrath, Marisa E; Vashee, Sanjay; Xue, Yong; Loomis, Cynthia A; Khanna, Kamal M; Cadwell, Ken; Desvignes, Ludovic; Frieman, Matthew B; Ortigoza, Mila B; Dittmann, Meike
Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets. Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2. Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing a role for an accessory protein in this context.
PMID: 37230979
ISSN: 2041-1723
CID: 5508612

A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8

Rodriguez-Rodriguez, Bruno A; Ciabattoni, Grace O; Valero-Jimenez, Ana M; Crosse, Keaton M; Schinlever, Austin R; Galvan, Joaquin J Rodriguez; Duerr, Ralf; Yeung, Stephen T; McGrath, Marisa E; Loomis, Cynthia; Khanna, Kamal M; Desvignes, Ludovic; Frieman, Matthew F; Ortigoza, Mila B; Dittmann, Meike
Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets 1,2 . Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not transmit SARS-CoV-2 3 . Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2) and omicron (B.1.1.529). We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing for the first time a role for an accessory protein this context.
PMCID:9558433
PMID: 36238716
ISSN: 2692-8205
CID: 5390862

Delta-Omicron recombinant escapes therapeutic antibody neutralization

Duerr, Ralf; Zhou, Hao; Tada, Takuya; Dimartino, Dacia; Marier, Christian; Zappile, Paul; Wang, Guiqing; Plitnick, Jonathan; Griesemer, Sara B.; Girardin, Roxanne; Machowski, Jessica; Bialosuknia, Sean; Lasek-Nesselquist, Erica; Hong, Samuel L.; Baele, Guy; Dittmann, Meike; Ortigoza, Mila B.; Prasad, Prithiv J.; McDonough, Kathleen; Landau, Nathaniel R.; St George, Kirsten; Heguy, Adriana
The emergence of recombinant viruses is a threat to public health, as recombination may integrate variant-specific features that together result in escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. We identified a Delta-Omicron (AY.45-BA.1) recombinant in an immunosuppressed transplant recipient treated with monoclonal antibody Sotrovimab. The single recombination breakpoint is located in the spike N-terminal domain adjacent to the Sotrovimab binding site. While Delta and BA.1 are sensitive to Sotrovimab neutralization, the Delta-Omicron recombinant is highly resistant. To our knowledge, this is the first described instance of recombination between circulating SARS-CoV-2 variants as a functional mechanism of resistance to treatment and immune escape.
SCOPUS:85148349152
ISSN: 2589-0042
CID: 5425942

Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia

Bernard-Raichon, Lucie; Venzon, Mericien; Klein, Jon; Axelrad, Jordan E; Zhang, Chenzhen; Sullivan, Alexis P; Hussey, Grant A; Casanovas-Massana, Arnau; Noval, Maria G; Valero-Jimenez, Ana M; Gago, Juan; Putzel, Gregory; Pironti, Alejandro; Wilder, Evan; Thorpe, Lorna E; Littman, Dan R; Dittmann, Meike; Stapleford, Kenneth A; Shopsin, Bo; Torres, Victor J; Ko, Albert I; Iwasaki, Akiko; Cadwell, Ken; Schluter, Jonas
Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.
PMID: 36319618
ISSN: 2041-1723
CID: 5358262

DDX60 selectively reduces translation off viral type II internal ribosome entry sites

Sadic, Mohammad; Schneider, William M; Katsara, Olga; Medina, Gisselle N; Fisher, Ashley; Mogulothu, Aishwarya; Yu, Yingpu; Gu, Meigang; de Los Santos, Teresa; Schneider, Robert J; Dittmann, Meike
Co-opting host cell protein synthesis is a hallmark of many virus infections. In response, certain host defense proteins limit mRNA translation globally, albeit at the cost of the host cell's own protein synthesis. Here, we describe an interferon-stimulated helicase, DDX60, that decreases translation from viral internal ribosome entry sites (IRESs). DDX60 acts selectively on type II IRESs of encephalomyocarditis virus (EMCV) and foot and mouth disease virus (FMDV), but not by other IRES types or by 5' cap. Correspondingly, DDX60 reduces EMCV and FMDV (type II IRES) replication, but not that of poliovirus or bovine enterovirus 1 (BEV-1; type I IRES). Furthermore, replacing the IRES of poliovirus with a type II IRES is sufficient for DDX60 to inhibit viral replication. Finally, DDX60 selectively modulates the amount of translating ribosomes on viral and in vitro transcribed type II IRES mRNAs, but not 5' capped mRNA. Our study identifies a novel facet in the repertoire of interferon-stimulated effector genes, the selective downregulation of translation from viral type II IRES elements.
PMID: 36256515
ISSN: 1469-3178
CID: 5360422