Searched for: in-biosketch:yes
person:evrong01
High-fidelity, large-scale targeted profiling of microsatellites
Loh, Caitlin A; Shields, Danielle A; Schwing, Adam; Evrony, Gilad D
Microsatellites are highly mutable sequences that can serve as markers for relationships among individuals or cells within a population. The accuracy and resolution of reconstructing these relationships depends on the fidelity of microsatellite profiling and the number of microsatellites profiled. However, current methods for targeted profiling of microsatellites incur significant "stutter" artifacts that interfere with accurate genotyping, and sequencing costs preclude whole-genome microsatellite profiling of a large number of samples. We developed a novel method for accurate and cost-effective targeted profiling of a panel of more than 150,000 microsatellites per sample, along with a computational tool for designing large-scale microsatellite panels. Our method addresses the greatest challenge for microsatellite profiling-"stutter" artifacts-with a low-temperature hybridization capture that significantly reduces these artifacts. We also developed a computational tool for accurate genotyping of the resulting microsatellite sequencing data that uses an ensemble approach integrating three microsatellite genotyping tools, which we optimize by analysis of de novo microsatellite mutations in human trios. Altogether, our suite of experimental and computational tools enables high-fidelity, large-scale profiling of microsatellites, which may find utility in diverse applications such as lineage tracing, population genetics, ecology, and forensics.
PMID: 39013593
ISSN: 1549-5469
CID: 5680192
DNA mismatch and damage patterns revealed by single-molecule sequencing
Liu, Mei Hong; Costa, Benjamin M; Bianchini, Emilia C; Choi, Una; Bandler, Rachel C; Lassen, Emilie; Grońska-Pęski, Marta; Schwing, Adam; Murphy, Zachary R; Rosenkjær, Daniel; Picciotto, Shany; Bianchi, Vanessa; Stengs, Lucie; Edwards, Melissa; Nunes, Nuno Miguel; Loh, Caitlin A; Truong, Tina K; Brand, Randall E; Pastinen, Tomi; Wagner, J Richard; Skytte, Anne-Bine; Tabori, Uri; Shoag, Jonathan E; Evrony, Gilad D
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.
PMID: 38867045
ISSN: 1476-4687
CID: 5669192
Ultra-Rapid Droplet Digital PCR Enables Intraoperative Tumor Quantification
Murphy, Zachary R; Bianchini, Emilia C; Smith, Andrew; Körner, Lisa I; Russell, Teresa; Reinecke, David; Wang, Yuxiu; Snuderl, Matija; Orringer, Daniel A; Evrony, Gilad D
The diagnosis and treatment of tumors often depends on molecular-genetic data. However, rapid and iterative access to molecular data is not currently feasible during surgery, complicating intraoperative diagnosis and precluding measurement of tumor cell burdens at surgical margins to guide resections. To address this gap, we developed Ultra-Rapid droplet digital PCR (UR-ddPCR), which can be completed in 15 minutes from tissue to result with an accuracy comparable to standard ddPCR. We demonstrate UR-ddPCR assays for the IDH1 R132H and BRAF V600E clonal mutations that are present in many low-grade gliomas and melanomas, respectively. We illustrate the clinical feasibility of UR-ddPCR by performing it intraoperatively for 13 glioma cases. We further combine UR-ddPCR measurements with UR-stimulated Raman histology intraoperatively to estimate tumor cell densities in addition to tumor cell percentages. We anticipate that UR-ddPCR, along with future refinements in assay instrumentation, will enable novel point-of-care diagnostics and the development of molecularly-guided surgeries that improve clinical outcomes.
PMCID:11160868
PMID: 38854127
CID: 5668772
Pangenome graphs improve the analysis of structural variants in rare genetic diseases
Groza, Cristian; Schwendinger-Schreck, Carl; Cheung, Warren A; Farrow, Emily G; Thiffault, Isabelle; Lake, Juniper; Rizzo, William B; Evrony, Gilad; Curran, Tom; Bourque, Guillaume; Pastinen, Tomi
Rare DNA alterations that cause heritable diseases are only partially resolvable by clinical next-generation sequencing due to the difficulty of detecting structural variation (SV) in all genomic contexts. Long-read, high fidelity genome sequencing (HiFi-GS) detects SVs with increased sensitivity and enables assembling personal and graph genomes. We leverage standard reference genomes, public assemblies (n = 94) and a large collection of HiFi-GS data from a rare disease program (Genomic Answers for Kids, GA4K, n = 574 assemblies) to build a graph genome representing a unified SV callset in GA4K, identify common variation and prioritize SVs that are more likely to cause genetic disease (MAF < 0.01). Using graphs, we obtain a higher level of reproducibility than the standard reference approach. We observe over 200,000 SV alleles unique to GA4K, including nearly 1000 rare variants that impact coding sequence. With improved specificity for rare SVs, we isolate 30 candidate SVs in phenotypically prioritized genes, including known disease SVs. We isolate a novel diagnostic SV in KMT2E, demonstrating use of personal assemblies coupled with pangenome graphs for rare disease genomics. The community may interrogate our pangenome with additional assemblies to discover new SVs within the allele frequency spectrum relevant to genetic diseases.
PMCID:10803329
PMID: 38253606
ISSN: 2041-1723
CID: 5624712
Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort
Cheung, Warren A; Johnson, Adam F; Rowell, William J; Farrow, Emily; Hall, Richard; Cohen, Ana S A; Means, John C; Zion, Tricia N; Portik, Daniel M; Saunders, Christopher T; Koseva, Boryana; Bi, Chengpeng; Truong, Tina K; Schwendinger-Schreck, Carl; Yoo, Byunggil; Johnston, Jeffrey J; Gibson, Margaret; Evrony, Gilad; Rizzo, William B; Thiffault, Isabelle; Younger, Scott T; Curran, Tom; Wenger, Aaron M; Grundberg, Elin; Pastinen, Tomi
Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.
PMCID:10226990
PMID: 37248219
ISSN: 2041-1723
CID: 5541202
Single duplex DNA sequencing with CODEC detects mutations with high sensitivity
Bae, Jin H; Liu, Ruolin; Roberts, Eugenia; Nguyen, Erica; Tabrizi, Shervin; Rhoades, Justin; Blewett, Timothy; Xiong, Kan; Gydush, Gregory; Shea, Douglas; An, Zhenyi; Patel, Sahil; Cheng, Ju; Sridhar, Sainetra; Liu, Mei Hong; Lassen, Emilie; Skytte, Anne-Bine; Grońska-Pęski, Marta; Shoag, Jonathan E; Evrony, Gilad D; Parsons, Heather A; Mayer, Erica L; Makrigiorgos, G Mike; Golub, Todd R; Adalsteinsson, Viktor A
Detecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules ('single duplexes') to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS. CODEC affords 1,000-fold higher accuracy than NGS, using up to 100-fold fewer reads than duplex sequencing. CODEC revealed mutation frequencies of 2.72 × 10-8 in sperm of a 39-year-old individual, and somatic mutations acquired with age in blood cells. CODEC detected genome-wide, clonal hematopoiesis mutations from single DNA molecules, single mutated duplexes from tumor genomes and liquid biopsies, microsatellite instability with 10-fold greater sensitivity and mutational signatures, and specific tumor mutations with up to 100-fold fewer reads. CODEC enables more precise genetic testing and reveals biologically significant mutations, which are commonly obscured by NGS errors.
PMID: 37106072
ISSN: 1546-1718
CID: 5465432
Biochemical characterization of two novel mutations in the human high-affinity choline transporter 1 identified in a patient with congenital myasthenic syndrome
Rizvi, Midhat; Truong, Tina K; Zhou, Janet; Batta, Manav; Moran, Ellen S; Pappas, John; Chu, Mary Lynn; Caluseriu, Oana; Evrony, Gilad D; Leslie, Elaine M; Cordat, Emmanuelle
Congenital myasthenic syndrome (CMS) is a heterogeneous condition associated with 34 different genes, including SLC5A7, which encodes the high affinity choline transporter 1 (CHT1). CHT1 is expressed in presynaptic neurons of the neuromuscular junction where it uses the inward sodium gradient to re-uptake choline. Bi-allelic CHT1 mutations often lead to neonatal lethality, and less commonly to non-lethal motor weakness and developmental delays. Here, we report detailed biochemical characterization of two novel mutations in CHT1, p.I294T and p.D349N, that we identified in an 11 year-old patient with a history of neonatal respiratory distress, and subsequent hypotonia and global developmental delay. Heterologous expression of each CHT1 mutant in human embryonic kidney cells showed two different mechanisms of reduced protein function. The p.I294T CHT1 mutant transporter function was detectable, but its abundance and half-life were significantly reduced. In contrast, the p.D349N CHT1 mutant was abundantly expressed at the cell membrane, but transporter function was absent. The residual function of the p.I294T CHT1 mutant may explain the non-lethal form of CMS in this patient, and the divergent mechanisms of reduced CHT1 function that we identified may guide future functional studies of the CHT1 myasthenic syndrome. Based on these in vitro studies that provided a diagnosis, treatment with cholinesterase inhibitor together with physical and occupational therapy significantly improved the patient's strength and quality of life.
PMID: 36611016
ISSN: 1460-2083
CID: 5433572
Serial enrichment of heteroduplex DNA using a MutS-magnetic bead system
Murphy, Zachary R; Shields, Danielle A; Evrony, Gilad D
Numerous applications in molecular biology and genomics require characterization of mutant DNA molecules present at low levels within a larger sample of non-mutant DNA. This is often achieved either by selectively amplifying mutant DNA, or by sequencing all the DNA followed by computational identification of the mutant DNA. However, selective amplification is challenging for insertions and deletions (indels). Additionally, sequencing all the DNA in a sample may not be cost effective when only the presence of a mutation needs to be ascertained rather than its allelic fraction. The MutS protein evolved to detect DNA heteroduplexes in which the two DNA strands are mismatched. Prior methods have utilized MutS to enrich mutant DNA by hybridizing mutant to non-mutant DNA to create heteroduplexes. However, the purity of heteroduplex DNA these methods achieve is limited because they can only feasibly perform one or two enrichment cycles. We developed a MutS-magnetic bead system that enables rapid serial enrichment cycles. With six cycles, we achieve complete purification of heteroduplex indel DNA originally present at a 5% fraction and over 40-fold enrichment of heteroduplex DNA originally present at a 1% fraction. This system may enable novel approaches for enriching mutant DNA for targeted sequencing. This article is protected by copyright. All rights reserved.
PMID: 36317440
ISSN: 1860-7314
CID: 5358492
An HNRNPK-specific DNA methylation signature makes sense of missense variants and expands the phenotypic spectrum of Au-Kline syndrome
Choufani, Sanaa; McNiven, Vanda; Cytrynbaum, Cheryl; Jangjoo, Maryam; Adam, Margaret P; Bjornsson, Hans T; Harris, Jacqueline; Dyment, David A; Graham, Gail E; Nezarati, Marjan M; Aul, Ritu B; Castiglioni, Claudia; Breckpot, Jeroen; Devriendt, Koen; Stewart, Helen; Banos-Pinero, Benito; Mehta, Sarju; Sandford, Richard; Dunn, Carolyn; Mathevet, Remi; van Maldergem, Lionel; Piard, Juliette; Brischoux-Boucher, Elise; Vitobello, Antonio; Faivre, Laurence; Bournez, Marie; Tran-Mau, Frederic; Maystadt, Isabelle; Fernández-Jaén, Alberto; Alvarez, Sara; GarcÃa-Prieto, Irene DÃez; Alkuraya, Fowzan S; Alsaif, Hessa S; Rahbeeni, Zuhair; El-Akouri, Karen; Al-Mureikhi, Mariam; Spillmann, Rebecca C; Shashi, Vandana; Sanchez-Lara, Pedro A; Graham, John M; Roberts, Amy; Chorin, Odelia; Evrony, Gilad D; Kraatari-Tiri, Minna; Dudding-Byth, Tracy; Richardson, Anamaria; Hunt, David; Hamilton, Laura; Dyack, Sarah; Mendelsohn, Bryce A; RodrÃguez, Nicolás; Sánchez-MartÃnez, Rosario; Tenorio-Castaño, Jair; Nevado, Julián; Lapunzina, Pablo; Tirado, Pilar; Carminho Amaro Rodrigues, Maria-Teresa; Quteineh, Lina; Innes, A Micheil; Kline, Antonie D; Au, P Y Billie; Weksberg, Rosanna
Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.
PMID: 36130591
ISSN: 1537-6605
CID: 5335432
Applications of Single-Cell DNA Sequencing
Evrony, Gilad D; Hinch, Anjali Gupta; Luo, Chongyuan
Over the past decade, genomic analyses of single cells-the fundamental units of life-have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 22 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
PMID: 33722077
ISSN: 1545-293x
CID: 4817472