Searched for: in-biosketch:yes
person:jonesd28
Correction: The intestinal microbiome and metabolome discern disease severity in cytotoxic T-lymphocyte-associated protein 4 deficiency
Chandrasekaran, Prabha; Krausz, Máté; Han, Yu; Mitsuiki, Noriko; Gabrysch, Annemarie; Nöltner, Christina; Proietti, Michele; Heller, Theo; Grou, Caroline; Calderon, Virginie; Subramanian, Poorani; Jones, Drew R; Siu, Yik; Deming, Clayton; Conlan, Sean; Holland, Steven M; Segre, Julia A; Uzel, Gulbu; Grimbacher, Bodo; Falcone, Emilia Liana
PMID: 40089763
ISSN: 2049-2618
CID: 5812892
The intestinal microbiome and metabolome discern disease severity in cytotoxic T-lymphocyte-associated protein 4 deficiency
Chandrasekaran, Prabha; Krausz, Máté; Han, Yu; Mitsuiki, Noriko; Gabrysch, Annemarie; Nöltner, Christina; Proietti, Michele; Heller, Theo; Grou, Caroline; Calderon, Virginie; Subramanian, Poorani; Jones, Drew R; Siu, Yik; Deming, Clayton; Conlan, Sean; Holland, Steven M; Segre, Julia A; Uzel, Gulbu; Grimbacher, Bodo; Falcone, Emilia Liana
BACKGROUND:Cytotoxic T-lymphocyte-associated protein 4 deficiency (CTLA4-D) is an inborn error of immunity (IEI) caused by heterozygous mutations, and characterized by immune cell infiltration into the gut and other organs, leading to intestinal disease, immune dysregulation and autoimmunity. While regulatory T-cell dysfunction remains central to CTLA4-D immunopathogenesis, mechanisms driving disease severity and intestinal pathology are unknown but likely involve intestinal dysbiosis. We determined whether the intestinal microbiome and metabolome could distinguish individuals with severe CTLA4-D and identify biomarkers of disease severity. RESULTS:The genera Veillonella and Streptococcus emerged as biomarkers that distinguished CTLA4-D from healthy cohorts from both the National Institutes of Health (NIH) Clinical Center, USA (NIH; CTLA-D, n = 32; healthy controls, n = 16), and a geographically distinct cohort from the Center for Chronic Immunodeficiency (CCI) of the Medical Center - University of Freiburg, Germany (CCI; CTLA4-D, n = 25; healthy controls, n = 24). Since IEIs in general may be associated with perturbations of the microbiota, a disease control cohort of individuals with common variable immunodeficiency (CVID, n = 20) was included to evaluate for a CTLA4-D-specific microbial signature. Despite common IEI-associated microbiome changes, the two bacterial genera retained their specificity as biomarkers for CTLA4-D. We further identified intestinal microbiome and metabolomic signatures that distinguished patients with CTLA4-D having severe vs. mild disease. Microbiome changes were associated with distinct stool metabolomic profiles and predicted changes in metabolic pathways. These differences were impacted by the presence of gastrointestinal manifestations and were partially reversed by treatment with abatacept and/or sirolimus. CONCLUSIONS:Loss of intestinal microbial diversity and dysbiosis causing metabolomic changes was observed in CTLA4-D. Albeit some of these features were shared with CVID, the distinct changes associated with CTLA4-D highlight the fact that IEI-associated microbiome changes likely reflect the underlying immune dysregulation. Identified candidate intestinal microbial and metabolic biomarkers distinguishing individuals with CTLA4-D based on severity should be studied prospectively to determine their predictive value, and investigated as potential therapeutic ta. Video Abstract.
PMCID:11817180
PMID: 39934899
ISSN: 2049-2618
CID: 5793452
Sex differences in mitochondrial free-carnitine levels in subjects at-risk and with Alzheimer's disease in two independent study cohorts
Bigio, Benedetta; Lima-Filho, Ricardo A S; Barnhill, Olivia; Sudo, Felipe K; Drummond, Claudia; Assunção, Naima; Vanderborght, Bart; Beasley, James; Young, Sarah; Korman, Aryeh; Jones, Drew R; Sultzer, David L; Ferreira, Sergio T; Mattos, Paulo; Head, Elizabeth; Tovar-Moll, Fernanda; De Felice, Fernanda G; Lourenco, Mychael V; Nasca, Carla
A major challenge in the development of more effective therapeutic strategies for Alzheimer's disease (AD) is the identification of molecular mechanisms linked to specific pathophysiological features of the disease. Importantly AD has a two-fold higher incidence in women than men and a protracted prodromal phase characterized by amnestic mild-cognitive impairment (aMCI) suggesting that biological processes occurring early can initiate vulnerability to AD. Here, we used a sample of 125 subjects from two independent study cohorts to determine the levels in plasma (the most accessible specimen) of two essential mitochondrial markers acetyl-L-carnitine (LAC) and its derivative free-carnitine motivated by a mechanistic model in rodents in which targeting mitochondrial metabolism of LAC leads to the amelioration of cognitive function and boosts epigenetic mechanisms of gene expression. We report a sex-specific deficiency in free-carnitine levels in women with aMCI and early-AD compared to cognitively healthy controls; no change was observed in men. We also replicated the prior finding of decreased LAC levels in both women and men with AD, supporting the robustness of the study samples assayed in our new study. The magnitude of the sex-specific free-carnitine deficiency reflected the severity of cognitive dysfunction and held in two study cohorts. Furthermore, patients with the lower free-carnitine levels showed higher β-amyloid(Aβ) accumulation and t-Tau levels assayed in cerebrospinal fluid (CSF). Computational analyses showed that the mitochondrial markers assayed in plasma are at least as accurate as CSF measures to classify disease status. Together with the mechanistic platform in rodents, these translational findings lay the groundwork to create preventive individualized treatments targeting sex-specific changes in mitochondrial metabolism that may be subtle to early cognitive dysfunction of AD risk.
PMID: 39774493
ISSN: 1476-5578
CID: 5805062
Mass Spectrometry Characterization of the Human Ankle and Hindfoot Fracture Microenvironment in Young and Aged Subjects
Dankert, John F; Mehta, Devan D; Rodrick, Tori C; Kanshin, Evgeny; Parola, Rown; Ueberheide, Beatrix M; Jones, Drew R; Egol, Kenneth A; Leucht, Philipp
BACKGROUND/UNASSIGNED:Bone regeneration following a fracture is dependent on multiple factors including skeletal stem cells (SSCs). Recruitment, proliferation, and differentiation of the SSCs is guided by the proteins and metabolites found within the fracture microenvironment. Understanding how intrinsic factors affect the fracture microenvironment has been a topic of ongoing investigation. This study sought to determine whether the levels of select proteins and metabolites within the fracture hematoma would be differentially expressed depending on the age of the patient. We hypothesized that a distinct set of proteins and metabolites found within the fracture hematoma microenvironment would be present at varying levels depending on patient age. METHODS/UNASSIGNED:The research study was reviewed and approved by an Institutional Review Board. Hematomas were collected from subjects aged 18 years old or older undergoing surgical intervention for a fracture. Hematoma samples were selected from the biorepository and assigned to one of two fracture groups including young ankle/hindfoot and aged ankle/hindfoot. Protein and metabolite levels within each hematoma were analyzed by liquid chromatography-mass spectrometry. RESULTS/UNASSIGNED:A total of seven hematomas were included in each the young ankle/hindfoot and aged ankle/hindfoot groups. From the global metabolomic analysis, creatine, 2-methylindoline, and acetyl-L-carnitine were identified as being differentially expressed between both groups. An untargeted metabolomic analysis of the two groups identified significant differences in the levels of an additional 66 metabolites. Proteomic analysis identified 34 proteins that were expressed at significantly different levels. CONCLUSIONS/UNASSIGNED:The level of metabolites and proteins found within the local fracture environment vary by patient age. Future investigations will focus on identifying a role for these proteins and metabolites in bone homeostasis and fracture healing. LEVEL OF EVIDENCE/UNASSIGNED:N/A, basic science investigation. SUPPLEMENTARY INFORMATION/UNASSIGNED:The online version contains supplementary material available at 10.1007/s43465-024-01284-3.
PMCID:11628468
PMID: 39664353
ISSN: 0019-5413
CID: 5762832
Tofacitinib Uptake by Patient-Derived Intestinal Organoids Predicts Individual Clinical Responsiveness
Jang, Kyung Ku; Hudesman, David; Jones, Drew R; Loke, P'ng; Axelrad, Jordan E; Cadwell, Ken; ,
PMID: 39094749
ISSN: 1528-0012
CID: 5731612
DELE1 maintains muscle proteostasis to promote growth and survival in mitochondrial myopathy
Lin, Hsin-Pin; Petersen, Jennifer D; Gilsrud, Alexandra J; Madruga, Angelo; D'Silva, Theresa M; Huang, Xiaoping; Shammas, Mario K; Randolph, Nicholas P; Johnson, Kory R; Li, Yan; Jones, Drew R; Pacold, Michael E; Narendra, Derek P
Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy, but how muscle senses and adapts to mitochondrial dysfunction is not well understood. Here, we used diverse mouse models of mitochondrial myopathy to show that the signal for mitochondrial dysfunction originates within mitochondria. The mitochondrial proteins OMA1 and DELE1 sensed disruption of the inner mitochondrial membrane and, in response, activated the mitochondrial integrated stress response (mt-ISR) to increase the building blocks for protein synthesis. In the absence of the mt-ISR, protein synthesis in muscle was dysregulated causing protein misfolding, and mice with early-onset mitochondrial myopathy failed to grow and survive. The mt-ISR was similar following disruptions in mtDNA maintenance (Tfam knockout) and mitochondrial protein misfolding (CHCHD10 G58R and S59L knockin) but heterogenous among mitochondria-rich tissues, with broad gene expression changes observed in heart and skeletal muscle and limited changes observed in liver and brown adipose tissue. Taken together, our findings identify that the DELE1 mt-ISR mediates a similar response to diverse forms of mitochondrial stress and is critical for maintaining growth and survival in early-onset mitochondrial myopathy.
PMID: 39379554
ISSN: 1460-2075
CID: 5706012
Patient subtyping analysis of baseline multi-omic data reveals distinct pre-immune states associated with antibody response to seasonal influenza vaccination
Sevim Bayrak, Cigdem; Forst, Christian V; Jones, Drew R; Gresham, David J; Pushalkar, Smruti; Wu, Shaohuan; Vogel, Christine; Mahal, Lara K; Ghedin, Elodie; Ross, Ted; GarcÃa-Sastre, Adolfo; Zhang, Bin
Understanding the molecular mechanisms underpinning diverse vaccination responses is critical for developing efficient vaccines. Molecular subtyping can offer insights into heterogeneous nature of responses and aid in vaccine design. We analyzed multi-omic data from 62 haemagglutinin seasonal influenza vaccine recipients (2019-2020), including transcriptomics, proteomics, glycomics, and metabolomics data collected pre-vaccination. We performed a subtyping analysis on the integrated data revealing five subtypes with distinct molecular signatures. These subtypes differed in the expression of pre-existing adaptive or innate immunity signatures, which were linked to significant variation in baseline immunoglobulin A (IgA) and hemagglutination inhibition (HAI) titer levels. It is worth noting that these differences persisted through day 28 post-vaccination, indicating the effect of initial immune state on vaccination response. These findings highlight the significance of interpersonal variation in baseline immune status as a crucial factor in determining the effectiveness of seasonal vaccines. Ultimately, incorporating molecular profiling could enable personalized vaccine optimization.
PMID: 39089348
ISSN: 1521-7035
CID: 5696572
Unraveling cysteine deficiency-associated rapid weight loss
Varghese, Alan; Gusarov, Ivan; Gamallo-Lana, Begoña; Dolgonos, Daria; Mankan, Yatin; Shamovsky, Ilya; Phan, Mydia; Jones, Rebecca; Gomez-Jenkins, Maria; White, Eileen; Wang, Rui; Jones, Drew; Papagiannakopoulos, Thales; Pacold, Michael E; Mar, Adam C; Littman, Dan R; Nudler, Evgeny
Forty percent of the US population and 1 in 6 individuals worldwide are obese, and the incidence of this disease is surging globally1,2. Various dietary interventions, including carbohydrate and fat restriction, and more recently amino acid restriction, have been explored to combat this epidemic3-6. We sought to investigate the impact of removing individual amino acids on the weight profiles of mice. Compared to essential amino acid restriction, induction of conditional cysteine restriction resulted in the most dramatic weight loss, amounting to 20% within 3 days and 30% within one week, which was readily reversed. This weight loss occurred despite the presence of substantial cysteine reserves stored in glutathione (GSH) across various tissues7. Further analysis demonstrated that the weight reduction primarily stemmed from an increase in the utilization of fat mass, while locomotion, circadian rhythm and histological appearance of multiple other tissues remained largely unaffected. Cysteine deficiency activated the integrated stress response (ISR) and NRF2-mediated oxidative stress response (OSR), which amplify each other, leading to the induction of GDF15 and FGF21, hormones associated with increased lipolysis, energy homeostasis and food aversion8-10. We additionally observed rapid tissue coenzyme A (CoA) depletion, resulting in energetically inefficient anaerobic glycolysis and TCA cycle, with sustained urinary excretion of pyruvate, orotate, citrate, α-ketoglutarate, nitrogen rich compounds and amino acids. In summary, our investigation highlights that cysteine restriction, by depleting GSH and CoA, exerts a maximal impact on weight loss, metabolism, and stress signaling compared to other amino acid restrictions. These findings may pave the way for innovative strategies for addressing a range of metabolic diseases and the growing obesity crisis.
PMCID:11312522
PMID: 39131293
ISSN: 2692-8205
CID: 5688592
Dietary and water restriction leads to increased susceptibility to antimicrobial resistant pathogens
Lacey, Keenan A; Pickrum, Adam M; Gonzalez, Sandra; Bartnicki, Eric; Castellaw, Ashley H; Rodrick, Tori C; Jones, Drew R; Khanna, Kamal M; Torres, Victor J
Dehydration and malnutrition are common and often underdiagnosed in hospital settings. Multidrug-resistant bacterial infections result in more than 35,000 deaths a year in nosocomial patients. The effect of temporal dietary and water restriction (DWR) on susceptibility to multidrug-resistant pathogens is unknown. We report that DWR markedly increased susceptibility to systemic infection by ESKAPE pathogens. Using a murine bloodstream model of methicillin-resistant Staphylococcus aureus infection, we show that DWR leads to significantly increased mortality and morbidity. DWR causes increased bacterial burden, severe pathology, and increased numbers of phagocytes in the kidney. DWR appears to alter the functionality of these phagocytes and is therefore unable to control infection. Mechanistically, we show that DWR impairs the ability of macrophages to phagocytose multiple bacterial pathogens and efferocytose apoptotic neutrophils. Together, this work highlights the crucial impact that diet and hydration play in protecting against infection.
PMCID:11268424
PMID: 39047095
ISSN: 2375-2548
CID: 5696022
Genome-wide screening identifies Trim33 as an essential regulator of dendritic cell differentiation
Tiniakou, Ioanna; Hsu, Pei-Feng; Lopez-Zepeda, Lorena S; Garipler, Görkem; Esteva, Eduardo; Adams, Nicholas M; Jang, Geunhyo; Soni, Chetna; Lau, Colleen M; Liu, Fan; Khodadadi-Jamayran, Alireza; Rodrick, Tori C; Jones, Drew; Tsirigos, Aristotelis; Ohler, Uwe; Bedford, Mark T; Nimer, Stephen D; Kaartinen, Vesa; Mazzoni, Esteban O; Reizis, Boris
The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.
PMID: 38608038
ISSN: 2470-9468
CID: 5646772