Searched for: in-biosketch:yes
person:koides01
Binding mode-guided development of high-performance antibodies targeting site-specific posttranslational modifications
Riso, Mariapia; Shah, Rohan N; Koide, Akiko; Ruthenburg, Alexander J; Koide, Shohei; Hattori, Takamitsu
Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies. Furthermore, the widespread use of potentially inconsistent, nonrenewable, and molecularly undefined antibodies presents experimental challenges thought to contribute to the reproducibility problem in biomedical research. In this study, we describe the binding mode-guided development of a platform that efficiently generates potent and selective recombinant antibodies to PTMs that are molecularly defined and renewable. Our platform is built on our previous discovery of an unconventional binding mode of anti-PTM antibodies, antigen clasping, where two antigen binding sites cooperatively sandwich a single antigen, creating extensive interactions with the antigen and leading to high selectivity and potency. We designed the platform that generates clasping antibodies with two distinct binding units, resulting in efficient generation of antibodies to a set of trimethylated histone H3 with high levels of specificity and affinity. Performance comparison in chromatin immunoprecipitation, a common application in epigenomics, revealed that a clasping antibody to trimethylated histone H3 at lysine 27 exhibited superior specificity to a widely used conventional antibody and captured symmetric and asymmetric nucleosomes in a less biased manner. We further generated clasping antibodies to phosphotyrosine antigens by using the same principle. These results suggest the broad applicability of our platform to generating high-performance clasping antibodies to diverse PTMs.
PMCID:11725865
PMID: 39793060
ISSN: 1091-6490
CID: 5775412
Development of mirror-image monobodies targeting the oncogenic BCR::ABL1 kinase
Schmidt, Nina; Kumar, Amit; Korf, Lukas; Dinh-Fricke, Adrian Valentin; Abendroth, Frank; Koide, Akiko; Linne, Uwe; Rakwalska-Bange, Magdalena; Koide, Shohei; Essen, Lars-Oliver; Vázquez, Olalla; Hantschel, Oliver
Mirror-image proteins, composed of D-amino acids, are an attractive therapeutic modality, as they exhibit high metabolic stability and lack immunogenicity. Development of mirror-image binding proteins is achieved through chemical synthesis of D-target proteins, phage display library selection of L-binders and chemical synthesis of (mirror-image) D-binders that consequently bind the physiological L-targets. Monobodies are well-established synthetic (L-)binding proteins and their small size (~90 residues) and lack of endogenous cysteine residues make them particularly accessible to chemical synthesis. Here, we develop monobodies with nanomolar binding affinities against the D-SH2 domain of the leukemic tyrosine kinase BCR::ABL1. Two crystal structures of heterochiral monobody-SH2 complexes reveal targeting of the pY binding pocket by an unconventional binding mode. We then prepare potent D-monobodies by either ligating two chemically synthesized D-peptides or by self-assembly without ligation. Their proper folding and stability are determined and high-affinity binding to the L-target is shown. D-monobodies are protease-resistant, show long-term plasma stability, inhibit BCR::ABL1 kinase activity and bind BCR::ABL1 in cell lysates and permeabilized cells. Hence, we demonstrate that functional D-monobodies can be developed readily. Our work represents an important step towards possible future therapeutic use of D-monobodies when combined with emerging methods to enable cytoplasmic delivery of monobodies.
PMCID:11666773
PMID: 39715735
ISSN: 2041-1723
CID: 5767342
Inhibition and degradation of NRAS with a pan-NRAS monobody
Whaby, Michael; Ketavarapu, Gayatri; Koide, Akiko; Mazzei, Megan; Mintoo, Mubashir; Glasser, Eliezra; Patel, Unnatiben; Nasarre, Cecile; Sale, Matthew J; McCormick, Frank; Koide, Shohei; O'Bryan, John P
The RAS family GTPases are the most frequently mutated oncogene family in human cancers. Activating mutations in either of the three RAS isoforms (HRAS, KRAS, or NRAS) are found in nearly 20% of all human tumors with NRAS mutated in ~25% of melanomas. Despite remarkable advancements in therapies targeted against mutant KRAS, NRAS-specific pharmacologics are lacking. Thus, development of inhibitors of NRAS would address a critical unmet need to treating primary tumors harboring NRAS mutations as well as BRAF-mutant melanomas, which frequently develop resistance to clinically approved BRAF inhibitors through NRAS mutation. Building upon our previous studies with the monobody NS1 that recognizes HRAS and KRAS but not NRAS, here we report the development of a monobody that specifically binds to both GDP and GTP-bound states of NRAS and inhibits NRAS-mediated signaling in a mutation-agnostic manner. Further, this monobody can be formatted into a genetically encoded NRAS-specific degrader. Our study highlights the feasibility of developing NRAS selective inhibitors for therapeutic efforts.
PMID: 39379700
ISSN: 1476-5594
CID: 5706022
Selective targeting of oncogenic hotspot mutations of the HER2 extracellular domain
Bang, Injin; Hattori, Takamitsu; Leloup, Nadia; Corrado, Alexis; Nyamaa, Atekana; Koide, Akiko; Geles, Ken; Buck, Elizabeth; Koide, Shohei
Oncogenic mutations in the extracellular domain (ECD) of cell-surface receptors could serve as tumor-specific antigens that are accessible to antibody therapeutics. Such mutations have been identified in receptor tyrosine kinases including HER2. However, it is challenging to selectively target a point mutant, while sparing the wild-type protein. Here we developed antibodies selective to HER2 S310F and S310Y, the two most common oncogenic mutations in the HER2 ECD, via combinatorial library screening and structure-guided design. Cryogenic-electron microscopy structures of the HER2 S310F homodimer and an antibody bound to HER2 S310F revealed that these antibodies recognize the mutations in a manner that mimics the dimerization arm of HER2 and thus inhibit HER2 dimerization. These antibodies as T cell engagers selectively killed a HER2 S310F-driven cancer cell line in vitro, and in vivo as a xenograft. These results validate HER2 ECD mutations as actionable therapeutic targets and offer promising candidates toward clinical development.
PMID: 39438724
ISSN: 1552-4469
CID: 5739862
Cytosolic delivery of monobodies using the bacterial type III secretion system inhibits oncogenic BCR: ABL1 signaling
Lebon, Chiara; Grossmann, Sebastian; Mann, Greg; Lindner, Florian; Koide, Akiko; Koide, Shohei; Diepold, Andreas; Hantschel, Oliver
BACKGROUND:The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells. Monobodies are small synthetic binding proteins that can inhibit oncogene signaling in cancer cells with high selectivity upon intracellular expression. Here, we engineered monobodies targeting the BCR::ABL1 tyrosine kinase for efficient delivery by the T3SS, quantified cytosolic delivery and target engagement in cancer cells and monitored inhibition of BCR::ABL1 signaling. METHODS:In vitro assays were performed to characterize destabilized monobodies (thermal shift assay and isothermal titration calorimetry) and to assess their secretion by the T3SS. Immunoblot assays were used to study the translocation of monobodies into different cell lines and to determine the intracellular concentration after translocation. Split-Nanoluc assays were performed to understand translocation and degradation kinetics and to evaluate target engagement after translocation. Phospho flow cytometry and apoptosis assays were performed to assess the functional effects of monobody translocation into BCR:ABL1-expressing leukemia cells. RESULTS:To enable efficient translocation of the stable monobody proteins by the T3SS, we engineered destabilized mutant monobodies that retained high affinity target binding and were efficiently injected into different cell lines. After injection, the cytosolic monobody concentrations reached mid-micromolar concentrations considerably exceeding their binding affinity. We found that injected monobodies targeting the BCR::ABL1 tyrosine kinase selectively engaged their target in the cytosol. The translocation resulted in inhibition of oncogenic signaling and specifically induced apoptosis in BCR::ABL1-dependent cells, consistent with the phenotype when the same monobody was intracellularly expressed. CONCLUSION/CONCLUSIONS:Hence, we establish the T3SS of Y. enterocolitica as a highly efficient protein translocation method for monobody delivery, enabling the selective targeting of different oncogenic signaling pathways and providing a foundation for future therapeutic application against intracellular targets.
PMCID:11483992
PMID: 39415233
ISSN: 1478-811x
CID: 5711712
ARGX-119 is an agonist antibody for human MuSK that reverses disease relapse in a mouse model of congenital myasthenic syndrome
Vanhauwaert, Roeland; Oury, Julien; Vankerckhoven, Bernhardt; Steyaert, Christophe; Jensen, Stine Marie; Vergoossen, Dana L E; Kneip, Christa; Santana, Leah; Lim, Jamie L; Plomp, Jaap J; Augustinus, Roy; Koide, Shohei; Blanchetot, Christophe; Ulrichts, Peter; Huijbers, Maartje G; Silence, Karen; Burden, Steven J
Muscle-specific kinase (MuSK) is essential for the formation, function, and preservation of neuromuscular synapses. Activation of MuSK by a MuSK agonist antibody may stabilize or improve the function of the neuromuscular junction (NMJ) in patients with disorders of the NMJ, such as congenital myasthenia (CM). Here, we generated and characterized ARGX-119, a first-in-class humanized agonist monoclonal antibody specific for MuSK, that is being developed for treatment of patients with neuromuscular diseases. We performed in vitro ligand-binding assays to show that ARGX-119 binds with high affinity to the Frizzled-like domain of human, nonhuman primate, rat, and mouse MuSK, without off-target binding, making it suitable for clinical development. Within the Fc region, ARGX-119 harbors L234A and L235A mutations to diminish potential immune-activating effector functions. Its mode of action is to activate MuSK, without interfering with its natural ligand neural Agrin, and cluster acetylcholine receptors in a dose-dependent manner, thereby stabilizing neuromuscular function. In a mouse model of DOK7 CM, ARGX-119 prevented early postnatal lethality and reversed disease relapse in adult Dok7 CM mice by restoring neuromuscular function and reducing muscle weakness and fatigability in a dose-dependent manner. Pharmacokinetic studies in nonhuman primates, rats, and mice revealed a nonlinear PK behavior of ARGX-119, indicative of target-mediated drug disposition and in vivo target engagement. On the basis of this proof-of-concept study, ARGX-119 has the potential to alleviate neuromuscular diseases hallmarked by impaired neuromuscular synaptic function, warranting further clinical development.
PMID: 39292800
ISSN: 1946-6242
CID: 5721242
Molecular basis for antibody recognition of multiple drug-peptide/MHC complexes
Maso, Lorenzo; Rajak, Epsa; Bang, Injin; Koide, Akiko; Hattori, Takamitsu; Neel, Benjamin G; Koide, Shohei
The HapImmuneTM platform exploits covalent inhibitors as haptens for creating major histocompatibility complex (MHC)-presented tumor-specific neoantigens by design, combining targeted therapies with immunotherapy for the treatment of drug-resistant cancers. A HapImmune antibody, R023, recognizes multiple sotorasib-conjugated KRAS(G12C) peptides presented by different human leukocyte antigens (HLAs). This high specificity to sotorasib, coupled with broad HLA-binding capability, enables such antibodies, when reformatted as T cell engagers, to potently and selectively kill sotorasib-resistant KRAS(G12C) cancer cells expressing different HLAs upon sotorasib treatment. The loosening of HLA restriction could increase the patient population that can benefit from this therapeutic approach. To understand the molecular basis for its unconventional binding capability, we used single-particle cryogenic electron microscopy to determine the structures of R023 bound to multiple sotorasib-peptide conjugates presented by different HLAs. R023 forms a pocket for sotorasib between the VH and VL domains, binds HLAs in an unconventional, angled way, with VL making most contacts with them, and makes few contacts with the peptide moieties. This binding mode enables the antibody to accommodate different hapten-peptide conjugates and to adjust its conformation to different HLAs presenting hapten-peptides. Deep mutational scanning validated the structures and revealed distinct levels of mutation tolerance by sotorasib- and HLA-binding residues. Together, our structural information and sequence landscape analysis reveal key features for achieving MHC-restricted recognition of multiple hapten-peptide antigens, which will inform the development of next-generation therapeutic antibodies.
PMID: 38781214
ISSN: 1091-6490
CID: 5654922
Proton-coupled transport mechanism of the efflux pump NorA
Li, Jianping; Li, Yan; Koide, Akiko; Kuang, Huihui; Torres, Victor J; Koide, Shohei; Wang, Da-Neng; Traaseth, Nathaniel J
Efflux pump antiporters confer drug resistance to bacteria by coupling proton import with the expulsion of antibiotics from the cytoplasm. Despite efforts there remains a lack of understanding as to how acid/base chemistry drives drug efflux. Here, we uncover the proton-coupling mechanism of the Staphylococcus aureus efflux pump NorA by elucidating structures in various protonation states of two essential acidic residues using cryo-EM. Protonation of Glu222 and Asp307 within the C-terminal domain stabilized the inward-occluded conformation by forming hydrogen bonds between the acidic residues and a single helix within the N-terminal domain responsible for occluding the substrate binding pocket. Remarkably, deprotonation of both Glu222 and Asp307 is needed to release interdomain tethering interactions, leading to opening of the pocket for antibiotic entry. Hence, the two acidic residues serve as a "belt and suspenders" protection mechanism to prevent simultaneous binding of protons and drug that enforce NorA coupling stoichiometry and confer antibiotic resistance.
PMCID:11130294
PMID: 38802368
ISSN: 2041-1723
CID: 5663352
Use of Phage Display and Other Molecular Display Methods for the Development of Monobodies
Koide, Akiko; Koide, Shohei
Synthetic binding proteins are human-made binding proteins that use non-antibody proteins as the starting scaffold. Molecular display technologies, such as phage display, enable the construction of large combinatorial libraries and their efficient sorting and, thus, are crucial for the development of synthetic binding proteins. Monobodies are the founding system of a set of synthetic binding proteins based on the fibronectin type III (FN3) domain. Since the original report in 1998, the monobody and related FN3-based systems have steadily been refined, and current methods are capable of rapidly generating potent and selective binding molecules to even challenging targets. The FN3 domain is small (∼90 amino acids) and autonomous and is structurally similar to the conventional immunoglobulin (Ig) domain. Unlike the Ig domain, however, the FN3 lacks a disulfide bond but is highly stable. These attributes of FN3 present unique opportunities and challenges in the design of phage and other display systems, combinatorial libraries, and library sorting strategies. This article reviews key technological innovations in the establishment of our monobody development pipeline, with an emphasis on phage display methodology. These give insights into the molecular mechanisms underlying molecular display technologies and protein-protein interactions, which should be broadly applicable to diverse systems intended for generating high-performance binding proteins.
PMID: 37137569
ISSN: 1559-6095
CID: 5509082
Systematic Fe(II)-EDTA Method of Dose-Dependent Hydroxyl Radical Generation for Protein Oxidative Footprinting
Chapman, Jessica R; Paukner, Max; Leser, Micheal; Teng, Kai Wen; Koide, Shohei; Holder, Marlene; Armache, Karim-Jean; Becker, Chris; Ueberheide, Beatrix; Brenowitz, Michael
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
PMID: 38049117
ISSN: 1520-6882
CID: 5595392