Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:liny02

Total Results:

65


Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy

Ji, Changyi; Yang, Xiaofeng; Eleish, Mohamed; Jiang, Yixiang; Tetlow, Amber M; Song, Soomin C; Martín-Ávila, Alejandro; Wu, Qian; Zhou, Yanmei; Gan, Wenbiao; Lin, Yan; Sigurdsson, Einar M
INTRODUCTION/BACKGROUND:It is unclear how early neuronal deficits occur in tauopathies, if these are associated with changes in neuronal network activity, and if they can be alleviated with therapies. METHODS:imaging in tauopathy mice at 6 versus 12 months, compared to controls, and treated the younger animals with a tau antibody. RESULTS:Neuronal function was impaired at 6 months but did not deteriorate further at 12 months, presumably because cortical tau burden was comparable at these ages. At 6 months, neurons were mostly hypoactive, with enhanced neuronal synchrony, and had dysregulated responses to stimulus. Ex vivo, electrophysiology revealed altered synaptic transmission and enhanced excitability of motor cortical neurons, which likely explains the altered network activity. Acute tau antibody treatment reduced pathological tau and gliosis and partially restored neuronal function. DISCUSSION/CONCLUSIONS:Tauopathies are associated with early neuronal deficits that can be attenuated with tau antibody therapy. HIGHLIGHTS/CONCLUSIONS:Neuronal hypofunction in awake and behaving mice in early stages of tauopathy. Altered network activity disrupted local circuitry engagement in tauopathy mice. Enhanced neuronal excitability and altered synaptic transmission in tauopathy mice. Tau antibody acutely reduced soluble phospho-tau and improved neuronal function.
PMID: 39368113
ISSN: 1552-5279
CID: 5710692

Single-domain antibody-based protein degrader for synucleinopathies

Jiang, Yixiang; Lin, Yan; Tetlow, Amber M; Pan, Ruimin; Ji, Changyi; Kong, Xiang-Peng; Congdon, Erin E; Sigurdsson, Einar M
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
PMCID:11140919
PMID: 38816762
ISSN: 1750-1326
CID: 5663902

Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy

Ji, Changyi; Yang, Xiaofeng; Eleish, Mohamed; Jiang, Yixiang; Tetlow, Amber M; Song, Soomin C; Martín-Ávila, Alejandro; Wu, Qian; Zhou, Yanmei; Gan, Wenbiao; Lin, Yan; Sigurdsson, Einar M
UNLABELLED:activity deficits but failed to rescue altered network changes. Taken together, substantial neuronal and network dysfunction occurred in the early stage of tauopathy that was partially alleviated with acute tau antibody treatment, which highlights the importance of functional assessment when evaluating the therapeutic potential of tau antibodies. HIGHLIGHTS/UNASSIGNED:Layer 2/3 motor cortical neurons exhibited hypofunction in awake and behaving mice at the early stage of tauopathy.Altered neuronal network activity disrupted local circuitry engagement in tauopathy mice during treadmill running.Layer 2/3 motor cortical neurons in tauopathy mice exhibited enhanced neuronal excitability and altered excitatory synaptic transmissions.Acute tau antibody treatment reduced pathological tau and gliosis, and partially restored neuronal hypofunction profiles but not network dysfunction.
PMCID:11092661
PMID: 38746288
CID: 5664362

Single-Domain Antibody-Based Protein Degrader for Synucleinopathies

Jiang, Yixiang; Lin, Yan; Tetlow, Amber M; Pan, Ruimin; Ji, Changyi; Kong, Xiang-Peng; Congdon, Erin E; Sigurdsson, Einar M
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
PMCID:10979981
PMID: 38558982
CID: 5664352

Single-domain antibody-based noninvasive in vivo imaging of α-synuclein or tau pathology

Jiang, Yixiang; Lin, Yan; Krishnaswamy, Senthilkumar; Pan, Ruimin; Wu, Qian; Sandusky-Beltran, Leslie A; Liu, Mengyu; Kuo, Min-Hao; Kong, Xiang-Peng; Congdon, Erin E; Sigurdsson, Einar M
Intracellular deposition of α-synuclein and tau are hallmarks of synucleinopathies and tauopathies, respectively. Recently, several dye-based imaging probes with selectivity for tau aggregates have been developed, but suitable imaging biomarkers for synucleinopathies are still unavailable. Detection of both of these aggregates early in the disease process may allow for prophylactic therapies before functional impairments have manifested, highlighting the importance of developing specific imaging probes for these lesions. In contrast to the β sheet dyes, single-domain antibodies, found in camelids and a few other species, are highly specific, and their small size allows better brain entry and distribution than whole antibodies. Here, we have developed such imaging ligands via phage display libraries derived from llamas immunized with α-synuclein and tau preparations, respectively. These probes allow noninvasive and specific in vivo imaging of α-synuclein versus tau pathology in mice, with the brain signal correlating strongly with lesion burden. These small antibody derivatives have great potential for in vivo diagnosis of these diseases.
PMCID:10171817
PMID: 37163602
ISSN: 2375-2548
CID: 5476842

China's Ambitious Policy Experiment with Social Long-Term Care Insurance: Promises, Challenges, and Prospects

Feng, Zhanlian; Lin, Yan; Wu, Bei; Zhuang, Xiaowei; Glinskaya, Elena
In 2016, China launched long-term care insurance (LTCI) pilot programs in 15 cities across the country. In this Commentary, we provide an overview of these pilots regarding the target insured population, sources of financing, beneficiary eligibility criteria, and benefit design. We offer perspectives on the strengths and limitations, implementation challenges, and future prospects of these ongoing pilots. Also, we highlight the needs for addressing several key policy issues and challenges before further expanding these programs toward national implementation. These include solidifying the LTCI financing pool for independence and self-sustainability, balancing national priorities and local needs in LTCI design, reducing coverage gaps and disparities, ensuring quality of care through pay-for-performance and regulatory oversight, and strengthening independent evaluation of LTCI implementation and impacts.
PMID: 36827510
ISSN: 1545-0821
CID: 5434982

Single domain antibodies targeting pathological tau protein: Influence of four IgG subclasses on efficacy and toxicity

Congdon, Erin E; Pan, Ruimin; Jiang, Yixiang; Sandusky-Beltran, Leslie A; Dodge, Andie; Lin, Yan; Liu, Mengyu; Kuo, Min-Hao; Kong, Xiang-Peng; Sigurdsson, Einar M
BACKGROUND:Eleven tau immunoglobulin G (IgG) antibodies have entered clinical trials to treat tauopathies, including Alzheimer's disease, but it is unclear which IgG subclass/subtype has the ideal efficacy and safety profile. Only two subtypes, with or without effector function, have been examined in the clinic and not for the same tau antibody. The few preclinical studies on this topic have only compared two subtypes of one antibody each and have yielded conflicting results. METHODS:subclasses containing identical tau binding domains but differing Fc region. Unmodified sdAbs and their IgG subclasses were tested for efficacy in primary cultures and in vivo microdialysis using JNPL3 tauopathy mice. FINDINGS/RESULTS:subclasses varied greatly within and between sdAbs. For one of them, all its subtypes were non-toxic, only those with effector function cleared tau, and were more effective in vivo than unmodified sdAb. For the other sdAb, all its subtypes were toxic in tauopathy cultures but not in wild-type cells, suggesting that bivalent binding of its tau epitope stabilizes a toxic conformation of tau, with major implications for tau pathogenesis. Likewise, its subclasses were less effective than the unmodified sdAb in clearing tau in vivo. INTERPRETATION/CONCLUSIONS:These findings indicate that tau antibodies with effector function are safe and better at clearing pathological tau than effectorless antibodies, Furthermore, tau antibodies can provide a valuable insight into tau pathogenesis, and some may aggravate it. FUNDING/BACKGROUND:Funding for these studies was provided by the National Institute of Health (R01 AG032611, R01 NS077239, RF1 NS120488, R21 AG 069475, R21 AG 058282, T32AG052909), and the NYU Alzheimer's Disease Center Pilot Grant Program (via P30 AG008051).
PMCID:9475275
PMID: 36099813
ISSN: 2352-3964
CID: 5332822

Increased neuronal activity in motor cortex reveals prominent calcium dyshomeostasis in tauopathy mice

Wu, Qian; Bai, Yang; Li, Wei; Congdon, Erin E; Liu, Wenke; Lin, Yan; Ji, Changyi; Gan, Wen-Biao; Sigurdsson, Einar M
Perturbed neuronal Ca2+ homeostasis is implicated in Alzheimer's disease, which has primarily been demonstrated in mice with amyloid-β deposits but to a lesser and more variable extent in tauopathy models. In this study, we injected AAV to express Ca2+ indicator in layer II/III motor cortex neurons and measured neuronal Ca2+ activity by two photon imaging in awake transgenic JNPL3 tauopathy and wild-type mice. Various biochemical measurements were conducted in postmortem mouse brains for mechanistic insight and a group of animals received two intravenous injections of a tau monoclonal antibody spaced by four days to test whether the Ca2+ dyshomeostasis was related to pathological tau protein. Under running conditions, we found abnormal neuronal Ca2+ activity in tauopathy mice compared to age-matched wild-type mice with higher frequency of Ca2+ transients, lower amplitude of peak Ca2+ transients and lower total Ca2+ activity in layer II/III motor cortex neurons. While at resting conditions, only Ca2+ frequency was increased. Brain levels of soluble pathological tau correlated better than insoluble tau levels with the degree of Ca2+ dysfunction in tauopathy mice. Furthermore, tau monoclonal antibody 4E6 partially rescued Ca2+ activity abnormalities in tauopathy mice after two intravenous injections and decreased soluble pathological tau protein within the brain. This correlation and antibody effects strongly suggest that the neuronal Ca2+ dyshomeostasis is causally linked to pathological tau protein. These findings also reveal more pronounced neuronal Ca2+ dysregulation in tauopathy mice than previously reported by two-photon imaging that can be partially corrected with an acute tau antibody treatment.
PMID: 33166699
ISSN: 1095-953x
CID: 4734562

Chronic PD-1 Checkpoint Blockade Does Not Affect Cognition or Promote Tau Clearance in a Tauopathy Mouse Model

Lin, Yan; Rajamohamedsait, Hameetha B; Sandusky-Beltran, Leslie A; Gamallo-Lana, Begona; Mar, Adam; Sigurdsson, Einar M
Programmed cell death protein 1 (PD-1) checkpoint blockade with an antibody has been shown to reduce amyloid-β plaques, associated pathologies and cognitive impairment in mouse models. More recently, this approach has shown effectiveness in a tauopathy mouse model to improve cognition and reduce tau lesions. Follow-up studies by other laboratories did not see similar benefits of this type of therapy in other amyloid-β plaque models. Here, we report a modest increase in locomotor activity but no effect on cognition or tau pathology, in a different more commonly used tauopathy model following a weekly treatment for 12 weeks with the same PD-1 antibody and isotype control as in the original Aβ- and tau-targeting studies. These findings indicate that further research is needed before clinical trials based on PD-1 checkpoint immune blockage are devised for tauopathies.
PMCID:6971044
PMID: 31992982
ISSN: 1663-4365
CID: 4294152

IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe-/- mice

Wang, Jing; Cheng, Xiang; Xiang, Mei-Xiang; Alanne-Kinnunen, Mervi; Wang, Jian-An; Chen, Han; He, Aina; Sun, Xinghui; Lin, Yan; Tang, Ting-Ting; Tu, Xin; Sjöberg, Sara; Sukhova, Galina K; Liao, Yu-Hua; Conrad, Daniel H; Yu, Lunyin; Kawakami, Toshiaki; Kovanen, Petri T; Libby, Peter; Shi, Guo-Ping
PMCID:6205392
PMID: 30382945
ISSN: 1558-8238
CID: 3399912