Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:lionnt01

Total Results:

60


Identifying in vivo genetic dependencies of melanocyte and melanoma development

Perlee, Sarah; Ma, Yilun; Hunter, Miranda V; Swanson, Jacob B; Cruz, Nelly M; Ming, Zhitao; Xia, Julia; Lionnet, Timothee; McGrail, Maura; White, Richard M
The advent of large-scale sequencing in both development and disease has identified large numbers of candidate genes that may be linked to important phenotypes. We have developed a rapid, scalable system for assessing the role of candidate genes using zebrafish. We generated transgenic zebrafish in which Cas9 was knocked in to the endogenous mitfa locus, a master transcription factor of the melanocyte lineage. The main advantage of this system compared to existing techniques is maintenance of endogenous regulatory elements. We used this system to identify both cell-autonomous and non-cell-autonomous regulators of normal melanocyte development. We then applied this to the melanoma setting to demonstrate that loss of genes required for melanocyte survival can paradoxically promote more aggressive phenotypes, highlighting that in vitro screens can mask in vivo phenotypes. Our genetic approach offers a versatile tool for exploring developmental processes and disease mechanisms that can readily be applied to other cell lineages.
PMID: 40879132
ISSN: 2050-084x
CID: 5910692

Identifying in vivo genetic dependencies of melanocyte and melanoma development

Perlee, Sarah; Ma, Yilun; Hunter, Miranda V; Swanson, Jacob B; Ming, Zhitao; Xia, Julia; Lionnet, Timothée; McGrail, Maura; White, Richard M
The advent of large-scale sequencing in both development and disease has identified large numbers of candidate genes that may be linked to important phenotypes. Validating the function of these candidates in vivo is challenging, due to low efficiency and low throughput of most model systems. We have developed a rapid, scalable system for assessing the role of candidate genes using zebrafish. We generated transgenic zebrafish in which Cas9 was knocked-in to the endogenous mitfa locus, a master transcription factor of the melanocyte lineage. We used this system to identify both cell-autonomous and non-cell autonomous regulators of normal melanocyte development. We then applied this to the melanoma setting to demonstrate that loss of genes required for melanocyte survival can paradoxically promote more aggressive phenotypes, highlighting that in vitro screens can mask in vivo phenotypes. Our high-efficiency genetic approach offers a versatile tool for exploring developmental processes and disease mechanisms that can readily be applied to other cell lineages.
PMCID:10983904
PMID: 38562693
ISSN: 2692-8205
CID: 5744082

De novo assembly of RNA m6A modification factors into viral genome-associated nuclear bodies drives HCMV RNA accumulation

Grande, Rebecca C.; Lin, Chia-Ching; Cammer, Michael; Emesom, Ebube D.; Khurram, Maaz Asher; Boutell, Chris; Denes, Lance T.; Lionnet, Timothee; Wilson, Angus C.; Mohr, Ian
ISI:001537879400005
ISSN: 2211-1247
CID: 5905992

Clonal evolution of the 3D chromatin landscape in patients with relapsed pediatric B-cell acute lymphoblastic leukemia

Narang, Sonali; Ghebrechristos, Yohana; Evensen, Nikki A; Murrell, Nina; Jasinski, Sylwia; Ostrow, Talia H; Teachey, David T; Raetz, Elizabeth A; Lionnet, Timothee; Witkowski, Matthew; Aifantis, Iannis; Tsirigos, Aristotelis; Carroll, William L
Relapsed pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains one of the leading causes of cancer mortality in children. We performed Hi-C, ATAC-seq, and RNA-seq on 12 matched diagnosis/relapse pediatric leukemia specimens to uncover dynamic structural variants (SVs) and 3D chromatin rewiring that may contribute to relapse. While translocations are assumed to occur early in leukemogenesis and be maintained throughout progression, we discovered novel, dynamic translocations and confirmed several fusion transcripts, suggesting functional and therapeutic relevance. Genome-wide chromatin remodeling was observed at all organizational levels: A/B compartments, TAD interactivity, and chromatin loops, including some loci shared by 25% of patients. Shared changes were found to drive the expression of genes/pathways previously implicated in resistance as well as novel therapeutic candidates, two of which (ATXN1 and MN1) we functionally validated. Overall, these results demonstrate chromatin reorganization under the selective pressure of therapy and offer the potential for discovery of novel therapeutic interventions.
PMCID:11358475
PMID: 39198446
ISSN: 2041-1723
CID: 5701942

The method in the madness: Transcriptional control from stochastic action at the single-molecule scale

Whitney, Peter H; Lionnet, Timothée
Cell states result from the ordered activation of gene expression by transcription factors. Transcription factors face opposing design constraints: they need to be dynamic to trigger rapid cell state transitions, but also stable enough to maintain terminal cell identities indefinitely. Recent progress in live-cell single-molecule microscopy has helped define the biophysical principles underlying this paradox. Beyond transcription factor activity, single-molecule experiments have revealed that at nearly every level of transcription regulation, control emerges from multiple short-lived stochastic interactions, rather than deterministic, stable interactions typical of other biochemical pathways. This architecture generates consistent outcomes that can be rapidly choreographed. Here, we highlight recent results that demonstrate how order in transcription regulation emerges from the apparent molecular-scale chaos and discuss remaining conceptual challenges.
PMID: 38954990
ISSN: 1879-033x
CID: 5681482

Connecting Chromatin Structures to Gene Regulation Using Dynamic Polymer Simulations

Fu, Yi; Zhao, Tianxiao; Clark, Finnegan; Nomikou, Sofia; Tsirigos, Aristotelis; Lionnet, Timothée
The transfer of regulatory information between distal loci on chromatin is thought to involve physical proximity, but key biophysical features of these contacts remain unclear. For instance, it is unknown how close and for how long two loci need to be in order to productively interact. The main challenge is that it is currently impossible to measure chromatin dynamics with high spatiotemporal resolution at scale. Polymer simulations provide an accessible and rigorous way to test biophysical models of chromatin regulation, yet there is a lack of simple and general methods for extracting the values of model parameters. Here we adapt the Nelder-Mead simplex optimization algorithm to select the best polymer model matching a given Hi-C dataset, using the MYC locus as an example. The model's biophysical parameters predict a compartmental rearrangement of the MYC locus in leukemia, which we validate with single-cell measurements. Leveraging trajectories predicted by the model, we find that loci with similar Hi-C contact frequencies can exhibit widely different contact dynamics. Interestingly, the frequency of productive interactions between loci exhibits a non-linear relationship with their Hi-C contact frequency when we enforce a specific capture radius and contact duration. These observations are consistent with recent experimental observations and suggest that the dynamic ensemble of chromatin configurations, rather than average contact matrices, is required to fully predict productive long-range chromatin interactions.
PMCID:10659377
PMID: 37986912
ISSN: 2692-8205
CID: 5744072

Cellular adaptation to cancer therapy along a resistance continuum

França, Gustavo S; Baron, Maayan; King, Benjamin R; Bossowski, Jozef P; Bjornberg, Alicia; Pour, Maayan; Rao, Anjali; Patel, Ayushi S; Misirlioglu, Selim; Barkley, Dalia; Tang, Kwan Ho; Dolgalev, Igor; Liberman, Deborah A; Avital, Gal; Kuperwaser, Felicia; Chiodin, Marta; Levine, Douglas A; Papagiannakopoulos, Thales; Marusyk, Andriy; Lionnet, Timothée; Yanai, Itai
Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance1. In addition to genetic mutations2, recent research has identified a role for non-genetic plasticity in transient drug tolerance3 and the acquisition of stable resistance4,5. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework. Here we demonstrate that resistance develops through trajectories of cell-state transitions accompanied by a progressive increase in cell fitness, which we denote as the 'resistance continuum'. This cellular adaptation involves a stepwise assembly of gene expression programmes and epigenetically reinforced cell states underpinned by phenotypic plasticity, adaptation to stress and metabolic reprogramming. Our results support the notion that epithelial-to-mesenchymal transition or stemness programmes-often considered a proxy for phenotypic plasticity-enable adaptation, rather than a full resistance mechanism. Through systematic genetic perturbations, we identify the acquisition of metabolic dependencies, exposing vulnerabilities that can potentially be exploited therapeutically. The concept of the resistance continuum highlights the dynamic nature of cellular adaptation and calls for complementary therapies directed at the mechanisms underlying adaptive cell-state transitions.
PMID: 38987605
ISSN: 1476-4687
CID: 5698982

Integrator-mediated clustering of poised RNA polymerase II synchronizes histone transcription

Lu, Feiyue; Park, Brandon J; Fujiwara, Rina; Wilusz, Jeremy E; Gilmour, David S; Lehmann, Ruth; Lionnet, Timothée
UNLABELLED:nurse cells as a model, we find that Pol II forms long-lived, transcriptionally poised clusters distinct from liquid droplets, which contain unbound and paused Pol II. Depletion of the Integrator complex endonuclease module, but not its phosphatase module or Pol II pausing factors disperses these Pol II clusters. Consequently, histone transcription fails to reach peak levels during S-phase and aberrantly continues throughout the cell cycle. We propose that Pol II clustering is a regulatory step occurring near promoters that limits rapid gene activation to defined times. ONE SENTENCE SUMMARY/UNASSIGNED:histone locus as a model, we show that clustered RNA polymerase II is poised for synchronous activation.
PMCID:10592978
PMID: 37873455
ISSN: 2692-8205
CID: 5744062

A universal deep-learning model for zinc finger design enables transcription factor reprogramming

Ichikawa, David M; Abdin, Osama; Alerasool, Nader; Kogenaru, Manjunatha; Mueller, April L; Wen, Han; Giganti, David O; Goldberg, Gregory W; Adams, Samantha; Spencer, Jeffrey M; Razavi, Rozita; Nim, Satra; Zheng, Hong; Gionco, Courtney; Clark, Finnegan T; Strokach, Alexey; Hughes, Timothy R; Lionnet, Timothee; Taipale, Mikko; Kim, Philip M; Noyes, Marcus B
Cys2His2 zinc finger (ZF) domains engineered to bind specific target sequences in the genome provide an effective strategy for programmable regulation of gene expression, with many potential therapeutic applications. However, the structurally intricate engagement of ZF domains with DNA has made their design challenging. Here we describe the screening of 49 billion protein-DNA interactions and the development of a deep-learning model, ZFDesign, that solves ZF design for any genomic target. ZFDesign is a modern machine learning method that models global and target-specific differences induced by a range of library environments and specifically takes into account compatibility of neighboring fingers using a novel hierarchical transformer architecture. We demonstrate the versatility of designed ZFs as nucleases as well as activators and repressors by seamless reprogramming of human transcription factors. These factors could be used to upregulate an allele of haploinsufficiency, downregulate a gain-of-function mutation or test the consequence of regulation of a single gene as opposed to the many genes that a transcription factor would normally influence.
PMCID:10421740
PMID: 36702896
ISSN: 1546-1696
CID: 5594812

Single-cell transcriptomics identifies Gadd45b as a regulator of herpesvirus-reactivating neurons

Hu, Hui-Lan; Srinivas, Kalanghad P; Wang, Shuoshuo; Chao, Moses V; Lionnet, Timothee; Mohr, Ian; Wilson, Angus C; Depledge, Daniel P; Huang, Tony T
Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.
PMID: 34842321
ISSN: 1469-3178
CID: 5065412