Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:neelb01

Total Results:

330


Aberrant ERK signaling in astrocytes impairs learning and memory in RASopathy-associated BRAF mutant mouse models

Kang, Minkyung; Choi, Jihye; Han, Jeongho; Araki, Toshiyuki; Kim, Soo-Whee; Ryu, Hyun-Hee; Kim, Min-Gyun; Kim, Seoyeon; Jang, Hanbyul; Kim, Sun Yong; Hwang, Kyoung-Doo; Kim, Soobin; Yoo, Myeongjong; Lee, Jaegeon; Kim, Kitae; Park, Pojeong; Choi, Ja Eun; Han, Dae Hee; Kim, Yujin; Kim, Jeongyeon; Chang, Sunghoe; Kaang, Bong-Kiun; Ko, Jung Min; Cheon, Keun-Ah; An, Joon-Yong; Kim, Sang Jeong; Park, Hyungju; Neel, Benjamin G; Kim, Chul Hoon; Lee, Yong-Seok
RAS/MAPK pathway mutations often induce RASopathies with overlapping features, such as craniofacial dysmorphology, cardiovascular defects, dermatologic abnormalities, and intellectual disabilities. Although B-Raf proto-oncogene (BRAF) mutations are associated with cardio-facio-cutaneous (CFC) syndrome and Noonan syndrome, it remains unclear how these mutations impair cognition. Here, we investigated the underlying neural mechanisms using several mouse models harboring a gain-of-function BRAF mutation (K499E) discovered in RASopathy patients. We found expressing BRAF K499E (KE) in neural stem cells under the control of a Nestin-Cre promoter (Nestin;BRAFKE/+) induced hippocampal memory deficits, but expressing it in excitatory or inhibitory neurons did not. BRAF KE expression in neural stem cells led to aberrant reactive astrogliosis, increased astrocytic Ca2+ fluctuations, and reduced hippocampal long-term depression (LTD) in mice. Consistently, 3D human cortical spheroids expressing BRAF KE also showed reactive astrogliosis. Astrocyte-specific adeno-associated virus-BRAF KE (AAV-BRAF KE) delivery induced memory deficits and reactive astrogliosis and increased astrocytic Ca2+ fluctuations. Notably, reducing extracellular signal-regulated kinase (ERK) activity in astrocytes rescued the memory deficits and altered astrocytic Ca2+ activity of Nestin;BRAFKE/+ mice. Furthermore, reducing astrocyte Ca2+ activity rescued the spatial memory impairments of BRAF KE-expressing mice. Our results demonstrate that ERK hyperactivity contributes to astrocyte dysfunction associated with Ca2+ dysregulation, leading to the memory deficits of BRAF-associated RASopathies.
PMCID:11996877
PMID: 39964758
ISSN: 1558-8238
CID: 5827102

Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data

Tan, Jimin; Le, Hortense; Deng, Jiehui; Liu, Yingzhuo; Hao, Yuan; Hollenberg, Michelle; Liu, Wenke; Wang, Joshua M; Xia, Bo; Ramaswami, Sitharam; Mezzano, Valeria; Loomis, Cynthia; Murrell, Nina; Moreira, Andre L; Cho, Kyunghyun; Pass, Harvey I; Wong, Kwok-Kin; Ban, Yi; Neel, Benjamin G; Tsirigos, Aristotelis; Fenyƶ, David
High-dimensional multiplexed imaging can reveal the spatial organization of tumour tissues at the molecular level. However, owing to the scale and information complexity of the imaging data, it is challenging to discover and thoroughly characterize the heterogeneity of tumour microenvironments. Here we show that self-supervised representation learning on data from imaging mass cytometry can be leveraged to distinguish morphological differences in tumour microenvironments and to precisely characterize distinct microenvironment signatures. We used self-supervised masked image modelling to train a vision transformer that directly takes high-dimensional multiplexed mass-cytometry images. In contrast with traditional spatial analyses relying on cellular segmentation, the vision transformer is segmentation-free, uses pixel-level information, and retains information on the local morphology and biomarker distribution. By applying the vision transformer to a lung-tumour dataset, we identified and validated a monocytic signature that is associated with poor prognosis.
PMID: 39979589
ISSN: 2157-846x
CID: 5812702

Hydroxychloroquine prevents resistance and potentiates the antitumor effect of SHP2 inhibition in NF1-associated malignant peripheral nerve sheath tumors

Sait, Sameer Farouk; Tang, Kwan Ho; Angus, Steven P; Brown, Rebecca; Sun, Daochun; Xie, Xuanhua; Iltis, Charlene; Lien, Michelle; D Socci, Nicholas; Bale, Tejus A; Davis, Christopher; Dixon, Shelley A H; Zhang, Chi; Wade Clapp, D; Neel, Benjamin G; Parada, Luis F
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic NF1 loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy. MPNSTs harbor additional mutations and respond poorly to MEK inhibition. Our analysis of genetically engineered and orthotopic patient-derived xenograft MPNST models indicates that MEK inhibition has poor antitumor efficacy. By contrast, upstream inhibition of RAS through the protein-tyrosine phosphatase SHP2 reduced downstream signaling and suppressed NF1 MPNST growth, although resistance eventually emerged. To investigate possible mechanisms of acquired resistance, kinomic analyses of resistant tumors were performed, and data analysis identified enrichment of activated autophagy pathway protein kinases. Combining SHP2 inhibition with hydroxychloroquine (HQ) resulted in durable responses in NF1 MPNSTs in both genetic and orthotopic xenograft mouse models. Our studies could be rapidly translated into a clinical trial to evaluate SHP2 inhibition in conjunction with HQ as a unique treatment approach for NF1 MPNSTs.
PMCID:11725864
PMID: 39793045
ISSN: 1091-6490
CID: 5782062

A mechanism for hypoxia-induced inflammatory cell death in cancer

Bhardwaj, Abhishek; Panepinto, Maria C; Ueberheide, Beatrix; Neel, Benjamin G
Hypoxic cancer cells resist many antineoplastic therapies and can seed recurrence1,2. We previously found that either deficiency or inhibition of protein-tyrosine phosphatase (PTP1B) promotes human epidermal growth factor receptor 2-positive breast cancer cell death in hypoxia by activation of RNF213 (ref. 3), a large protein with multiple AAA-ATPase domains and two ubiquitin ligase domains (RING and RZ) implicated in Moyamoya disease, lipotoxicity and innate immunity4. Here we report that PTP1B and ABL1/2 reciprocally control RNF213 tyrosine phosphorylation and, consequently, its oligomerization and RZ domain activation. The RZ domain ubiquitylates and induces the degradation of the major NF-κB regulator CYLD/SPATA2. Decreased CYLD/SPATA2 levels lead to NF-κB activation and induction of the NLRP3 inflammasome which, together with hypoxia-induced endoplasmic reticulum stress, triggers pyroptotic cell death. Consistent with this model, CYLD deletion phenocopies, whereas NLRP3 deletion blocks, the effects of PTP1B deficiency on human epidermal growth factor receptor 2-positive breast cancer xenograft growth. Reconstitution studies with RNF213 mutants confirm that the RZ domain mediates tumour cell death. In concert, our results identify a unique, potentially targetable PTP1B-RNF213-CYLD-SPATA2 pathway critical for the control of inflammatory cell death in hypoxic tumours, provide new insights into RNF213 regulation and have potential implications for the pathogenesis of Moyamoya disease, inflammatory disorders and autoimmune disease.
PMID: 39506105
ISSN: 1476-4687
CID: 5766872

Molecular basis for antibody recognition of multiple drug-peptide/MHC complexes

Maso, Lorenzo; Rajak, Epsa; Bang, Injin; Koide, Akiko; Hattori, Takamitsu; Neel, Benjamin G; Koide, Shohei
The HapImmuneTM platform exploits covalent inhibitors as haptens for creating major histocompatibility complex (MHC)-presented tumor-specific neoantigens by design, combining targeted therapies with immunotherapy for the treatment of drug-resistant cancers. A HapImmune antibody, R023, recognizes multiple sotorasib-conjugated KRAS(G12C) peptides presented by different human leukocyte antigens (HLAs). This high specificity to sotorasib, coupled with broad HLA-binding capability, enables such antibodies, when reformatted as T cell engagers, to potently and selectively kill sotorasib-resistant KRAS(G12C) cancer cells expressing different HLAs upon sotorasib treatment. The loosening of HLA restriction could increase the patient population that can benefit from this therapeutic approach. To understand the molecular basis for its unconventional binding capability, we used single-particle cryogenic electron microscopy to determine the structures of R023 bound to multiple sotorasib-peptide conjugates presented by different HLAs. R023 forms a pocket for sotorasib between the VH and VL domains, binds HLAs in an unconventional, angled way, with VL making most contacts with them, and makes few contacts with the peptide moieties. This binding mode enables the antibody to accommodate different hapten-peptide conjugates and to adjust its conformation to different HLAs presenting hapten-peptides. Deep mutational scanning validated the structures and revealed distinct levels of mutation tolerance by sotorasib- and HLA-binding residues. Together, our structural information and sequence landscape analysis reveal key features for achieving MHC-restricted recognition of multiple hapten-peptide antigens, which will inform the development of next-generation therapeutic antibodies.
PMID: 38781214
ISSN: 1091-6490
CID: 5654922

Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation

Tsutsumi, Ryouhei; Ueberheide, Beatrix; Liang, Feng-Xia; Neel, Benjamin G; Sakai, Ryuichi; Saito, Yoshiro
Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
PMID: 38565573
ISSN: 2041-1723
CID: 5726222

Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer

Tong, Xinyuan; Patel, Ayushi S; Kim, Eejung; Li, Hongjun; Chen, Yueqing; Li, Shuai; Liu, Shengwu; Dilly, Julien; Kapner, Kevin S; Zhang, Ningxia; Xue, Yun; Hover, Laura; Mukhopadhyay, Suman; Sherman, Fiona; Myndzar, Khrystyna; Sahu, Priyanka; Gao, Yijun; Li, Fei; Li, Fuming; Fang, Zhaoyuan; Jin, Yujuan; Gao, Juntao; Shi, Minglei; Sinha, Satrajit; Chen, Luonan; Chen, Yang; Kheoh, Thian; Yang, Wenjing; Yanai, Itai; Moreira, Andre L; Velcheti, Vamsidhar; Neel, Benjamin G; Hu, Liang; Christensen, James G; Olson, Peter; Gao, Dong; Zhang, Michael Q; Aguirre, Andrew J; Wong, Kwok-Kin; Ji, Hongbin
KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.
PMID: 38402609
ISSN: 1878-3686
CID: 5691332

Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy

Mukhopadhyay, Suman; Huang, Hsin-Yi; Lin, Ziyan; Ranieri, Michela; Li, Shuai; Sahu, Soumyadip; Liu, Yingzhuo; Ban, Yi; Guidry, Kayla; Hu, Hai; Lopez, Alfonso; Sherman, Fiona; Tan, Yi Jer; Lee, Yeuan Ting; Armstrong, Amanda P; Dolgalev, Igor; Sahu, Priyanka; Zhang, Tinghu; Lu, Wenchao; Gray, Nathanael S; Christensen, James G; Tang, Tracy T; Velcheti, Vamsidhar; Khodadadi-Jamayran, Alireza; Wong, Kwok-Kin; Neel, Benjamin G
UNLABELLED:Non-small lung cancers (NSCLC) frequently (∼30%) harbor KRAS driver mutations, half of which are KRASG12C. KRAS-mutant NSCLC with comutated STK11 and/or KEAP1 is particularly refractory to conventional, targeted, and immune therapy. Development of KRASG12C inhibitors (G12Ci) provided a major therapeutic advance, but resistance still limits their efficacy. To identify genes whose deletion augments efficacy of the G12Cis adagrasib (MRTX-849) or adagrasib plus TNO155 (SHP2i), we performed genome-wide CRISPR/Cas9 screens on KRAS/STK11-mutant NSCLC lines. Recurrent, potentially targetable, synthetic lethal (SL) genes were identified, including serine-threonine kinases, tRNA-modifying and proteoglycan synthesis enzymes, and YAP/TAZ/TEAD pathway components. Several SL genes were confirmed by siRNA/shRNA experiments, and the YAP/TAZ/TEAD pathway was extensively validated in vitro and in mice. Mechanistic studies showed that G12Ci treatment induced gene expression of RHO paralogs and activators, increased RHOA activation, and evoked ROCK-dependent nuclear translocation of YAP. Mice and patients with acquired G12Ci- or G12Ci/SHP2i-resistant tumors showed strong overlap with SL pathways, arguing for the relevance of the screen results. These findings provide a landscape of potential targets for future combination strategies, some of which can be tested rapidly in the clinic. SIGNIFICANCE/UNASSIGNED:Identification of synthetic lethal genes with KRASG12C using genome-wide CRISPR/Cas9 screening and credentialing of the ability of TEAD inhibition to enhance KRASG12C efficacy provides a roadmap for combination strategies. See related commentary by Johnson and Haigis, p. 4005.
PMID: 37729426
ISSN: 1538-7445
CID: 5606372

Proteomic Dynamics of Breast Cancer Cell Lines Identifies Potential Therapeutic Protein Targets

Sun, Rui; Ge, Weigang; Zhu, Yi; Sayad, Azin; Luna, Augustin; Lyu, Mengge; Liang, Shuang; Tobalina, Luis; Rajapakse, Vinodh N; Yu, Chenhuan; Zhang, Huanhuan; Fang, Jie; Wu, Fang; Xie, Hui; Saez-Rodriguez, Julio; Ying, Huazhong; Reinhold, William C; Sander, Chris; Pommier, Yves; Neel, Benjamin G; Aebersold, Ruedi; Guo, Tiannan
Treatment and relevant targets for breast cancer (BC) remain limited, especially for triple-negative BC (TNBC). We identified 6091 proteins of 76 human BC cell lines using data-independent acquisition (DIA). Integrating our proteomic findings with prior multi-omics datasets, we found that including proteomics data improved drug sensitivity predictions and provided insights into the mechanisms of action. We subsequently profiled the proteomic changes in nine cell lines (five TNBC and four non-TNBC) treated with EGFR/AKT/mTOR inhibitors. In TNBC, metabolism pathways were dysregulated after EGFR/mTOR inhibitor treatment, while RNA modification and cell cycle pathways were affected by AKT inhibitor. This systematic multi-omics and in-depth analysis of the proteome of BC cells can help prioritize potential therapeutic targets and provide insights into adaptive resistance in TNBC.
PMID: 37343696
ISSN: 1535-9484
CID: 5542772

Genome-wide CRISPR/Cas9 screens reveal shared and cell-specific mechanisms of resistance to SHP2 inhibition

Wei, Wei; Geer, Mitchell J; Guo, Xinyi; Dolgalev, Igor; Sanjana, Neville E; Neel, Benjamin G
SHP2 (PTPN11) acts upstream of SOS1/2 to enable RAS activation. Allosteric SHP2 inhibitors (SHP2i) in the clinic prevent SHP2 activation, block proliferation of RTK- or cycling RAS mutant-driven cancers, and overcome "adaptive resistance." To identify SHP2i resistance mechanisms, we performed genome-wide CRISPR/Cas9 knockout screens on two SHP2i-sensitive cell lines, recovering genes expected to cause resistance (NF1, PTEN, CDKN1B, LZTR1, and RASA2) and novel targets (INPPL1, MAP4K5, epigenetic modifiers). We screened 14 additional lines with a focused CRISPR library targeting common "hits" from the genome-wide screens. LZTR1 deletion conferred resistance in 12/14 lines, followed by MAP4K5 (8/14), SPRED2/STK40 (6/14), and INPPL1 (5/14). INPPL1, MAP4K5, or LZTR1 deletion reactivated ERK signaling. INPPL1-mediated sensitization to SHP2i required its NPXY motif but not lipid phosphatase activity. MAP4K5 acted upstream of MEK through a kinase-dependent target(s); LZTR1 had cell-dependent effects on RIT and RAS stability. INPPL1, MAP4K5, or LZTR1 deletion also conferred SHP2i resistance in vivo. Defining the SHP2i resistance landscape could suggest effective combination approaches.
PMID: 36820830
ISSN: 1540-9538
CID: 5434002