Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:nixonr01

Total Results:

335


Calpastatin, a calpain specific inhibitor, reduce seizures in a mouse model of temporal lobe epilepsy

Lam, Philip M; Rao, Mala V; Nixon, Ralph A; González, Marco I
Epilepsy is a chronic condition characterized by unpredictable and recurrent spontaneous seizures. In a previous study, we reported that pharmacological inhibition of calpain prevented epileptogenesis in the rat pilocarpine model. In this study, we demonstrate that transgenic overexpression of calpastatin, the endogenous inhibitor of calpain, reduces calpain activation and lessens seizure burden in the mouse intrahippocampal kainate model. Blockade of calpain activation was evidenced by a reduction in the generation of spectrin breakdown products, a hallmark of calpain activation. CAST overexpression was associated with a significant reduction in seizure burden, further supporting the idea that blocking calpain overactivation prevents epilepsy. Moreover, a reduction in seizure burden was accompanied by a decrease in inflammatory markers but not cell death. Together, these observations corroborate the role of calpain overactivation in epileptogenesis and provide further support for the use of calpain inhibitors as a viable strategy to prevent epilepsy. PLAIN LANGUAGE SUMMARY: The mechanisms by which brain alterations lead to spontaneous seizures are not well understood. Acquired epilepsy often follows brain trauma. After a brain injury, the activation of the protease calpain has been associated with the development of spontaneous seizures. Our observations indicate that transgenic overexpression of calpastatin, an endogenous inhibitor of calpain, impacts epileptogenesis and reduces seizure burden. This suggests that inhibiting calpain could be a viable strategy to prevent epilepsy.
PMID: 40296431
ISSN: 2470-9239
CID: 5833322

Calpastatin, a calpain specific inhibitor, reduce seizures in a mouse model of temporal lobe epilepsy

Lam, Philip M; Rao, Mala V; Nixon, Ralph A; González, Marco I
Epilepsy is a chronic condition characterized by unpredictable and recurrent spontaneous seizures. In a previous study, we reported that pharmacological inhibition of calpain prevented epileptogenesis in the rat pilocarpine model. In this study, we demonstrate that transgenic overexpression of calpastatin, the endogenous inhibitor of calpain, reduces calpain activation and lessens seizure burden in the mouse intrahippocampal kainate model. Blockade of calpain activation was evidenced by a reduction in the generation of spectrin breakdown products, a hallmark of calpain activation. CAST overexpression was associated with a significant reduction in seizure burden, further supporting the idea that blocking calpain overactivation prevents epilepsy. Moreover, a reduction in seizure burden was accompanied by a decrease in inflammatory markers but not cell death. Together, these observations corroborate the role of calpain overactivation in epileptogenesis and provide further support for the use of calpain inhibitors as a viable strategy to prevent epilepsy. PLAIN LANGUAGE SUMMARY: The mechanisms by which brain alterations lead to spontaneous seizures are not well understood. Acquired epilepsy often follows brain trauma. After a brain injury, the activation of the protease calpain has been associated with the development of spontaneous seizures. Our observations indicate that transgenic overexpression of calpastatin, an endogenous inhibitor of calpain, impacts epileptogenesis and reduces seizure burden. This suggests that inhibiting calpain could be a viable strategy to prevent epilepsy.
PMID: 40296431
ISSN: 2470-9239
CID: 5833332

Pathophysiologic abnormalities in transgenic mice carrying the Alzheimer disease PSEN1 Δ440 mutation

Fuller, Peyton E; Collis, Victoria L; Sharma, Pallavi; Burkett, Angelina M; Wang, Shaoteng; Brown, Kyle A; Weir, Nick; Goulbourne, Chris N; Nixon, Ralph A; Longden, Thomas A; Gould, Todd D; Monteiro, Mervyn J
Mutations in PSEN1 were first discovered as a cause of Alzheimer's disease (AD) in 1995, yet the mechanism(s) by which the mutations cause disease still remains unknown. The generation of novel mouse models assessing the effects of different mutations could aid in this endeavor. Here we report on transgenic mouse lines made with the Δ440 PSEN1 mutation that causes AD with parkinsonism:- two expressing the un-tagged human protein and two expressing a HA-tagged version. Detailed characterization of these lines showed that Line 305 in particular, which expresses the untagged protein, develops age-dependent memory deficits and pathologic features, many of which are consistent with features found in AD. Key behavioral and physiological alterations found in the novel 305 line included an age-dependent deficit in spontaneous alternations in the Y-maze, a decrease in exploration of the center of an open field box, a decrease in the latency to fall on a rotarod, a reduction in synaptic strength and pair-pulse facilitation by electrophysiology, and profound alterations to cerebral blood flow regulation. The pathologic alterations found in the line included, significant neuronal loss in the hippocampus and cortex, astrogliosis, and changes in several proteins involved in synaptic and mitochondrial function, Ca2+ regulation, and autophagy. Taken together, these findings suggest that the transgenic lines will be useful for the investigation of AD pathogenesis.
PMCID:11578115
PMID: 39323410
ISSN: 1460-2083
CID: 5757872

Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases

Nixon, Ralph A; Rubinsztein, David C
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
PMID: 39107446
ISSN: 1471-0080
CID: 5696802

Autophagy-lysosomal-associated neuronal death in neurodegenerative disease

Nixon, Ralph A
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
PMID: 39259382
ISSN: 1432-0533
CID: 5690402

Correction: Drug development targeting degeneration of the basal forebrain cholinergic system: its time has come

Alam, John J; Nixon, Ralph A
PMID: 37946303
ISSN: 1750-1326
CID: 5614542

Drug development targeting degeneration of the basal forebrain cholinergic system: its time has come

Alam, John J; Nixon, Ralph A
PMID: 37794391
ISSN: 1750-1326
CID: 5609562

Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr682-phosphorylated APP βCTF

Im, Eunju; Jiang, Ying; Stavrides, Philip H; Darji, Sandipkumar; Erdjument-Bromage, Hediye; Neubert, Thomas A; Choi, Jun Yong; Wegiel, Jerzy; Lee, Ju-Hyun; Nixon, Ralph A
Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its β-C-terminal fragment (βCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-βCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-βCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-βCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-βCTF. Elevated APP-βCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.
PMCID:10371027
PMID: 37494443
ISSN: 2375-2548
CID: 5592302

Posttranscriptional regulation of neurofilament proteins and tau in health and disease

Yuan, Aidong; Nixon, Ralph A
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
PMID: 36441047
ISSN: 1873-2747
CID: 5373862

The three-dimensional landscape of cortical chromatin accessibility in Alzheimer's disease

Bendl, Jaroslav; Hauberg, Mads E; Girdhar, Kiran; Im, Eunju; Vicari, James M; Rahman, Samir; Fernando, Michael B; Townsley, Kayla G; Dong, Pengfei; Misir, Ruth; Kleopoulos, Steven P; Reach, Sarah M; Apontes, Pasha; Zeng, Biao; Zhang, Wen; Voloudakis, Georgios; Brennand, Kristen J; Nixon, Ralph A; Haroutunian, Vahram; Hoffman, Gabriel E; Fullard, John F; Roussos, Panos
To characterize the dysregulation of chromatin accessibility in Alzheimer's disease (AD), we generated 636 ATAC-seq libraries from neuronal and nonneuronal nuclei isolated from the superior temporal gyrus and entorhinal cortex of 153 AD cases and 56 controls. By analyzing a total of ~20 billion read pairs, we expanded the repertoire of known open chromatin regions (OCRs) in the human brain and identified cell-type-specific enhancer-promoter interactions. We show that interindividual variability in OCRs can be leveraged to identify cis-regulatory domains (CRDs) that capture the three-dimensional structure of the genome (3D genome). We identified AD-associated effects on chromatin accessibility, the 3D genome and transcription factor (TF) regulatory networks. For one of the most AD-perturbed TFs, USF2, we validated its regulatory effect on lysosomal genes. Overall, we applied a systematic approach to understanding the role of the 3D genome in AD. We provide all data as an online resource for widespread community-based analysis.
PMID: 36171428
ISSN: 1546-1726
CID: 5334392