Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:novikd01

Total Results:

113


Quantifying axonal features of human superficial white matter from three-dimensional multibeam serial electron microscopy data assisted by deep learning

Tian, Qiyuan; Ngamsombat, Chanon; Lee, Hong-Hsi; Berger, Daniel R; Wu, Yuelong; Fan, Qiuyun; Bilgic, Berkin; Li, Ziyu; Novikov, Dmitry S; Fieremans, Els; Rosen, Bruce R; Lichtman, Jeff W; Huang, Susie Y
Short-range association fibers located in the superficial white matter play an important role in mediating higher-order cognitive function in humans. Detailed morphological characterization of short-range association fibers at the microscopic level promises to yield important insights into the axonal features driving cortico-cortical connectivity in the human brain yet has been difficult to achieve to date due to the challenges of imaging at nanometer-scale resolution over large tissue volumes. This work presents results from multi-beam scanning electron microscopy (EM) data acquired at 4 × 4 × 33 nm3 resolution in a volume of human superficial white matter measuring 200 × 200 × 112 μm (Braitenberg and Schüz, 2013), leveraging automated analysis methods. Myelin and myelinated axons were automatically segmented using deep convolutional neural networks (CNNs), assisted by transfer learning and dropout regularization techniques. A total of 128,285 myelinated axons were segmented, of which 70,321 and 2,102 were longer than 10 and 100 μm, respectively. Marked local variations in diameter (i.e., beading) and direction (i.e., undulation) were observed along the length of individual axons. Myelinated axons longer than 10 μm had inner diameters around 0.5 µm, outer diameters around 1 µm, and g-ratios around 0.5. This work fills a gap in knowledge of axonal morphometry in the superficial white matter and provides a large 3D human EM dataset and accurate segmentation results for a variety of future studies in different fields.
PMID: 40222502
ISSN: 1095-9572
CID: 5827032

SpinFlowSim: A blood flow simulation framework for histology-informed diffusion MRI microvasculature mapping in cancer

Voronova, Anna Kira; Grigoriou, Athanasios; Bernatowicz, Kinga; Simonetti, Sara; Serna, Garazi; Roson, NĂºria; Escobar, Manuel; Vieito, Maria; Nuciforo, Paolo; Toledo, Rodrigo; Garralda, Elena; Fieremans, Els; Novikov, Dmitry S; Palombo, Marco; Perez-Lopez, Raquel; Grussu, Francesco
Diffusion Magnetic Resonance Imaging (dMRI) sensitises the MRI signal to spin motion. This includes Brownian diffusion, but also flow across intricate networks of capillaries. This effect, the intra-voxel incoherent motion (IVIM), enables microvasculature characterisation with dMRI, through metrics such as the vascular signal fraction fV or the vascular Apparent Diffusion Coefficient (ADC) D. The IVIM metrics, while sensitive to perfusion, are protocol-dependent, and their interpretation can change depending on the flow regime spins experience during the dMRI measurements (e.g., diffusive vs ballistic), which is in general not known for a given voxel. These facts hamper their practical clinical utility, and innovative vascular dMRI models are needed to enable the in vivo calculation of biologically meaningful markers of capillary flow. These could have relevant applications in cancer, as in the assessment of the response to anti-angiogenic therapies targeting tumour vessels. This paper tackles this need by introducing SpinFlowSim, an open-source simulator of dMRI signals arising from blood flow within pipe networks. SpinFlowSim, tailored for the laminar flow patterns within capillaries, enables the synthesis of highly-realistic microvascular dMRI signals, given networks reconstructed from histology. We showcase the simulator by generating synthetic signals for 15 networks, reconstructed from liver biopsies, and containing cancerous and non-cancerous tissue. Signals exhibit complex, non-mono-exponential behaviours, consistent with in vivo signal patterns, and pointing towards the co-existence of different flow regimes within the same network, as well as diffusion time dependence. We also demonstrate the potential utility of SpinFlowSim by devising a strategy for microvascular property mapping informed by the synthetic signals, and focussing on the quantification of blood velocity distribution moments and of an apparent network branching index. These were estimated in silico and in vivo, in healthy volunteers scanned at 1.5T and 3T and in 13 cancer patients, scanned at 1.5T. In conclusion, realistic flow simulations, as those enabled by SpinFlowSim, may play a key role in the development of the next-generation of dMRI methods for microvascular mapping, with immediate applications in oncology.
PMID: 40073583
ISSN: 1361-8423
CID: 5808542

Revealing membrane integrity and cell size from diffusion kurtosis time dependence

Lee, Hong-Hsi; Novikov, Dmitry S; Fieremans, Els; Huang, Susie Y
PURPOSE/OBJECTIVE: METHODS: RESULTS: CONCLUSION/CONCLUSIONS:Numerical simulations and theory provide an interpretation of a specific feature of kurtosis time-dependence, offering a potential biomarker for in vivo evaluation of pathology by disentangling the functional (permeability) and structural (cell size) integrity in tissues. This is relevant as the time-dependent diffusion cumulants are sensitive to pathological changes in membrane integrity and cellular structure in diseases, such as ischemic stroke, tumors, and Alzheimer's disease.
PMID: 39473219
ISSN: 1522-2594
CID: 5746962

Denoising Improves Cross-Scanner and Cross-Protocol Test-Retest Reproducibility of Diffusion Tensor and Kurtosis Imaging

Ades-Aron, Benjamin; Coelho, Santiago; Lemberskiy, Gregory; Veraart, Jelle; Baete, Steven H; Shepherd, Timothy M; Novikov, Dmitry S; Fieremans, Els
The clinical translation of diffusion magnetic resonance imaging (dMRI)-derived quantitative contrasts hinges on robust reproducibility, minimizing both same-scanner and cross-scanner variability. As multi-site data sets, including multi-shell dMRI, expand in scope, enhancing reproducibility across variable MRI systems and MRI protocols becomes crucial. This study evaluates the reproducibility of diffusion kurtosis imaging (DKI) metrics (beyond conventional diffusion tensor imaging (DTI)), at the voxel and region-of-interest (ROI) levels on magnitude and complex-valued dMRI data, using denoising with and without harmonization. We compared same-scanner, cross-scanner, and cross-protocol variability for a multi-shell dMRI protocol (2-mm isotropic resolution, b = 0, 1000, 2000 s/mm2) in 20 subjects. We first evaluated the effectiveness of Marchenko-Pastur Principal Component Analysis (MPPCA) based denoising strategies for both magnitude and complex data to mitigate noise-induced bias and variance, to improve dMRI parametric maps and reproducibility. Next, we examined the impact of denoising under different population analysis approaches, specifically comparing voxel-wise versus region of interest (ROI)-based methods. We also evaluated the role of denoising when harmonizing dMRI across scanners and protocols. The results indicate that DTI and DKI maps visually improve after MPPCA denoising, with noticeably fewer outliers in kurtosis maps. Denoising, either using magnitude or complex dMRI, enhances voxel-wise reproducibility, with test-retest variability of kurtosis indices reduced from 15%-20% without denoising to 5%-10% after denoising. Complex dMRI denoising reduces the noise floor by up to 60%. Denoising not only reduced variability across scans and protocols, but also increased statistical power for low SNR voxel-wise comparisons when comparing cross sectional groups. In conclusion, MPPCA denoising, either over magnitude or complex dMRI data, enhances the reproducibility and precision of higher-order diffusion metrics across same-scanner, cross-scanner, and cross-protocol assessments. The enhancement in data quality and precision facilitates the broader application and acceptance of these advanced imaging techniques in both clinical practice and large-scale neuroimaging studies.
PMCID:11885890
PMID: 40051327
ISSN: 1097-0193
CID: 5809852

Microstructurally informed subject-specific parcellation of the corpus callosum using axonal water fraction

Chung, Sohae; Fieremans, Els; Novikov, Dmitry S; Lui, Yvonne W
The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as Hofer and Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation. Here we present a novel subject-specific and microstructurally-informed method for callosal parcellation based on axonal water fraction (ƒ) known as a diffusion metric reflective of axon caliber and density. We studied 30 healthy subjects from the Human Connectome Project dataset with multi-shell diffusion MRI. The biophysical parameter ƒ was derived from compartment-specific WM modeling. Inflection points were identified where there were concavity changes in ƒ across the CC to delineate callosal subregions. We observed relatively higher ƒ in anterior and posterior areas known to consist of a greater number of small diameter fibers and lower ƒ in posterior body areas of the CC known to consist of a greater number of large diameter fibers. Based on the degree of change in ƒ along the callosum, seven callosal subregions were consistently delineated for each individual. Therefore, this method provides microstructurally informed callosal parcellation in a subject-specific way, allowing for more accurate analysis in the corpus callosum.
PMID: 39671086
ISSN: 1863-2661
CID: 5761922

In vivo mapping of cellular resolution neuropathology in brain ischemia with diffusion MRI

Wu, Dan; Lee, Hong-Hsi; Ba, Ruicheng; Turnbill, Victoria; Wang, Xiaoli; Luo, Yu; Walczak, Piotr; Fieremans, Els; Novikov, Dmitry S; Martin, Lee J; Northington, Frances J; Zhang, Jiangyang
Noninvasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent advances in diffusion magnetic resonance imaging enabled in vivo examination of tissue microstructures well beyond the imaging resolution. Here, we proposed to use diffusion time-dependent diffusion kurtosis imaging (tDKI) to simultaneously assess cellular morphology and transmembrane permeability in hypoxic-ischemic (HI) brain injury. Through numerical simulations and organoid imaging, we demonstrated the feasibility of capturing effective size and permeability changes using tDKI. In vivo MRI of HI-injured mouse brains detected a shift of the tDKI peak to longer diffusion times, suggesting swelling of the cellular processes. Furthermore, we observed a faster decrease of the tDKI tail, reflecting increased transmembrane permeability associated with up-regulated water exchange or necrosis. Such information, unavailable from a single diffusion time, can predict salvageable tissues. Preliminary applications of tDKI in patients with ischemic stroke suggested increased transmembrane permeability in stroke regions, illustrating tDKI's potential for detecting pathological changes in the clinics.
PMID: 39018390
ISSN: 2375-2548
CID: 5699342

Signatures of microstructure in gradient-echo and spin-echo signals

Storey, Pippa; Novikov, Dmitry S
PURPOSE/OBJECTIVE:To determine whether the spatial scale and magnetic susceptibility of microstructure can be evaluated robustly from the decay of gradient-echo and spin-echo signals. THEORY AND METHODS/METHODS:Gradient-echo and spin-echo images were acquired from suspensions of spherical polystyrene microbeads of 10, 20, and 40 μm nominal diameter. The sizes of the beads and their magnetic susceptibility relative to the medium were estimated from the signal decay curves, using a lookup table generated from Monte Carlo simulations and an analytic model based on the Gaussian phase approximation. RESULTS:Fitting Monte Carlo predictions to spin-echo data yielded acceptable estimates of microstructural parameters for the 20 and 40 μm microbeads. Using gradient-echo data, the Monte Carlo lookup table provided satisfactory parameter estimates for the 20 μm beads but unstable results for the diameter of the largest beads. Neither spin-echo nor gradient-echo data allowed accurate parameter estimation for the smallest beads. The analytic model performed poorly over all bead sizes. CONCLUSIONS:Microstructural sources of magnetic susceptibility produce distinctive non-exponential signatures in the decay of gradient-echo and spin-echo signals. However, inverting the problem to extract microstructural parameters from the signals is nontrivial and, in certain regimes, ill-conditioned. For microstructure with small characteristic length scales, parameter estimation is hampered by the difficulty of acquiring accurate data at very short echo times. For microstructure with large characteristic lengths, the gradient-echo signal approaches the static-dephasing regime, where it becomes insensitive to size. Applicability of the analytic model was further limited by failure of the Gaussian phase approximation for all but the smallest beads.
PMID: 38520259
ISSN: 1522-2594
CID: 5641072

Callosal Interhemispheric Communication in Mild Traumatic Brain Injury: A Mediation Analysis on WM Microstructure Effects

Chung, Sohae; Bacon, Tamar; Rath, Joseph F; Alivar, Alaleh; Coelho, Santiago; Amorapanth, Prin; Fieremans, Els; Novikov, Dmitry S; Flanagan, Steven R; Bacon, Joshua H; Lui, Yvonne W
BACKGROUND AND PURPOSE/OBJECTIVE:Because the corpus callosum connects the left and right hemispheres and a variety of WM bundles across the brain in complex ways, damage to the neighboring WM microstructure may specifically disrupt interhemispheric communication through the corpus callosum following mild traumatic brain injury. Here we use a mediation framework to investigate how callosal interhemispheric communication is affected by WM microstructure in mild traumatic brain injury. MATERIALS AND METHODS/METHODS:Multishell diffusion MR imaging was performed on 23 patients with mild traumatic brain injury within 1 month of injury and 17 healthy controls, deriving 11 diffusion metrics, including DTI, diffusional kurtosis imaging, and compartment-specific standard model parameters. Interhemispheric processing speed was assessed using the interhemispheric speed of processing task (IHSPT) by measuring the latency between word presentation to the 2 hemivisual fields and oral word articulation. Mediation analysis was performed to assess the indirect effect of neighboring WM microstructures on the relationship between the corpus callosum and IHSPT performance. In addition, we conducted a univariate correlation analysis to investigate the direct association between callosal microstructures and IHSPT performance as well as a multivariate regression analysis to jointly evaluate both callosal and neighboring WM microstructures in association with IHSPT scores for each group. RESULTS:Several significant mediators in the relationships between callosal microstructure and IHSPT performance were found in healthy controls. However, patients with mild traumatic brain injury appeared to lose such normal associations when microstructural changes occurred compared with healthy controls. CONCLUSIONS:This study investigates the effects of neighboring WM microstructure on callosal interhemispheric communication in healthy controls and patients with mild traumatic brain injury, highlighting that neighboring noncallosal WM microstructures are involved in callosal interhemispheric communication and information transfer. Further longitudinal studies may provide insight into the temporal dynamics of interhemispheric recovery following mild traumatic brain injury.
PMID: 38637026
ISSN: 1936-959x
CID: 5650822

The effects of axonal beading and undulation on axonal diameter estimation from diffusion MRI: Insights from simulations in human axons segmented from three-dimensional electron microscopy

Lee, Hong-Hsi; Tian, Qiyuan; Sheft, Maxina; Coronado-Leija, Ricardo; Ramos-Llorden, Gabriel; Abdollahzadeh, Ali; Fieremans, Els; Novikov, Dmitry S; Huang, Susie Y
The increasing availability of high-performance gradient systems in human MRI scanners has generated great interest in diffusion microstructural imaging applications such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion MRI is attained at strong diffusion weightings
PMID: 38168082
ISSN: 1099-1492
CID: 5639652

Microstructurally Informed Subject-Specific Parcellation of the Corpus Callosum using Axonal Water Fraction

Chung, Sohae; Fieremans, Els; Novikov, Dmitry S; Lui, Yvonne W
The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as the Hofer/Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation. Here we present a novel subject-specific and microstructurally-informed method for callosal parcellation based on axonal water fraction (ƒ) known as a diffusion metric reflective of axon caliber and density. We studied 30 healthy subjects from the Human Connectome Project (HCP) dataset with multi-shell diffusion MRI. The biophysical parameter ƒ was derived from compartment-specific WM modeling. Inflection points were identified where there were concavity changes in ƒ across the CC to delineate callosal subregions. We observed relatively higher ƒ in anterior and posterior areas consisting of a greater number of small diameter fibers and lower ƒ in posterior body areas of the CC consisting of a greater number of large diameter fibers. Based on degree of change in ƒ along the callosum, seven callosal subregions can be consistently delineated for each individual. We observe that ƒ can capture differences in underlying tissue microstructures and seven subregions can be identified across CC. Therefore, this method provides microstructurally informed callosal parcellation in a subject-specific way, allowing for more accurate analysis in the corpus callosum.
PMCID:10690318
PMID: 38045398
CID: 5597642