Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:palait01

Total Results:

55


Nilotinib as a Prospective Treatment for Alzheimer's Disease: Effect on Proteins Involved in Neurodegeneration and Neuronal Homeostasis

Srivastava, Ankita; Renna, Heather A; Johnson, Maryann; Sheehan, Katie; Ahmed, Saba; Palaia, Thomas; Pinkhasov, Aaron; Gomolin, Irving H; Wisniewski, Thomas; De Leon, Joshua; Reiss, Allison B
Nilotinib, a tyrosine kinase inhibitor that targets the Abelson tyrosine kinase (c-Abl) signaling pathway, is FDA-approved to treat chronic myeloid leukemia. Nilotinib has properties indicative of a possible utility in neuroprotection that have prompted exploration of repurposing the drug for the treatment of Alzheimer's disease (AD) and Parkinson's disease (PD). AD is a progressive age-related neurodegenerative disorder characterized by the deposition of extracellular amyloid-β plaques and intracellular neurofibrillary tangles. It is incurable and affects approximately 50 million patients worldwide. Nilotinib reduces c-Abl phosphorylation, amyloid-β levels, and dopaminergic neuron degeneration in preclinical AD models. This study explores the effects of nilotinib on amyloid processing and mitochondrial functioning in the SH-SY5Y human neuroblastoma cell line. SH-SY5Y cells were exposed to nilotinib (1, 5, and 10 µM). Real-time PCR and immunoblot analysis were performed to quantify the expression of genes pertaining to amyloid-β processing and neuronal health. Nilotinib did not significantly change APP, BACE1, or ADAM10 mRNA levels. However, BACE1 protein was significantly increased at 1 µM, and ADAM10 was increased at 10 µM nilotinib without affecting APP protein expression. Further, nilotinib treatment did not affect the expression of genes associated with neuronal health and mitochondrial functioning. Taken together, our findings do not support the efficacy of nilotinib treatment for neuroprotection.
PMCID:11509617
PMID: 39459541
ISSN: 2075-1729
CID: 5740392

Correction: The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice

Stevenson, Matthew; Srivastava, Ankita; Nacher, Maria; Hall, Christopher; Palaia, Thomas; Lee, Jenny; Zhao, Chaohui Lisa; Lau, Raymond; Ali, Mohamed A E; Park, Christopher Y; Schlamp, Florencia; Heffron, Sean P; Fisher, Edward A; Brathwaite, Collin; Ragolia, Louis
PMID: 38236349
ISSN: 1708-0428
CID: 5737482

The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice

Stevenson, Matthew; Srivastava, Ankita; Nacher, Maria; Hall, Christopher; Palaia, Thomas; Lee, Jenny; Zhao, Chaohui Lisa; Lau, Raymond; Ali, Mohamed A E; Park, Christopher Y; Schlamp, Florencia; Heffron, Sean P; Fisher, Edward A; Brathwaite, Collin; Ragolia, Louis
PURPOSE/OBJECTIVE:Roux-en-Y gastric bypass (RYGB) leads to the improvement of many obesity-associated conditions. The degree to which post-operative macronutrient composition contributes to metabolic improvement after RYGB is understudied. METHODS:A mouse model of RYGB was used to examine the effects of diet on the post-operative outcomes of RYGB. Obese mice underwent either Sham or RYGB surgery and were administered either chow or HFD and then monitored for an additional 8 weeks. RESULTS:After RYGB, reductions to body weight, fat mass, and lean mass were similar regardless of diet. RYGB and HFD were independently detrimental to bone mineral density and plasma vitamin D levels. Independent of surgery, HFD accelerated hematopoietic stem and progenitor cell proliferation and differentiation and exhibited greater myeloid lineage commitment. Independent of diet, systemic iron deficiency was present after RYGB. In both Sham and RYGB groups, HFD increased energy expenditure. RYGB increased fecal energy loss, and HFD after RYGB increased fecal lipid content. RYGB lowered fasting glucose and liver glycogen levels but HFD had an opposing effect. Indices of insulin sensitivity improved independent of diet. HFD impaired improvements to dyslipidemia, NAFLD, and fibrosis. CONCLUSION/CONCLUSIONS:Post-operative diet plays a significant role in determining the degree to which RYGB reverses obesity-induced metabolic abnormalities such as hyperglycemia, dyslipidemia, and NAFLD. Diet composition may be targeted in order to assist in the treatment of post-RYGB bone mineral density loss and vitamin D deficiency as well as to reverse myeloid lineage commitment. HFD after RYGB continues to pose a significant multidimensional health risk.
PMID: 38191966
ISSN: 1708-0428
CID: 5707802

Therapeutic Potential of P110 Peptide: New Insights into Treatment of Alzheimer's Disease

Srivastava, Ankita; Johnson, Maryann; Renna, Heather A; Sheehan, Katie M; Ahmed, Saba; Palaia, Thomas; Pinkhasov, Aaron; Gomolin, Irving H; De Leon, Joshua; Reiss, Allison B
Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-β accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-β generation and improving neuronal health by maintaining mitochondrial function in neurons.
PMCID:10672680
PMID: 38004296
ISSN: 2075-1729
CID: 5609092

Reversal of NAFLD After VSG Is Independent of Weight-Loss but RYGB Offers More Efficacy When Maintained on a High-Fat Diet

Srivastava, Ankita; Stevenson, Matthew; Lee, Jenny; Hall, Christopher; Palaia, Thomas; Zhao, Chaohui Lisa; Lau, Raymond; Brathwaite, Collin; Ragolia, Louis
PURPOSE/OBJECTIVE:Bariatric surgery is emerging as an effective treatment for obesity and the metabolic syndrome. Recently, we demonstrated that Roux-en-Y gastric bypass (RYGB), but not vertical sleeve gastrectomy (VSG), resulted in improvements to white adipose physiology and enhanced brown adipose functioning. Since beneficial alterations to liver health are also expected after bariatric surgery, comparing the post-operative effects of RYGB and VSG on liver physiology is essential to their application in the treatment of non-alcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS/METHODS:The effects of RYGB and VSG on liver physiology were compared using diet induced mouse model of obesity. High-fat diet (HFD) was administered for 12 weeks after surgery and alterations to liver physiology were assessed. RESULTS:Both RYGB and VSG showed decreased liver weight as well as reductions to hepatic cholesterol and triglyceride levels. There were demonstrable improvements to NAFLD activity score (NAS) and fibrosis stage scoring after both surgeries. In RYGB, these beneficial changes to liver function resulted from the downregulation of pro-fibrotic and upregulation anti-fibrotic genes, as well as increased fatty acid oxidation and bile acid flux. For VSG, though similar alterations were observed, they were less potent. However, VSG did significantly downregulate pro-fibrotic genes and showed increased glycogen content paralleled by decreased glycogenolysis which may have contributed to the resolution of NAFLD. CONCLUSION/CONCLUSIONS:RYGB and VSG improve liver physiology and function, but RYGB is more efficacious. Resolutions of NAFLD in RYGB and VSG are achieved through different processes, independent of weight loss.
PMID: 35419698
ISSN: 1708-0428
CID: 5204402

NOGOB receptor deficiency increases cerebrovascular permeability and hemorrhage via impairing histone acetylation-mediated CCM1/2 expression

Fang, Zhi; Sun, Xiaoran; Wang, Xiang; Ma, Ji; Palaia, Thomas; Rana, Ujala; Miao, Benjamin; Ragolia, Louis; Hu, Wenquan; Miao, Qing Robert
The loss function of cerebral cavernous malformation (CCM) genes leads to most CCM lesions characterized by enlarged leaking vascular lesions in the brain. Although we previously showed that NOGOB receptor (NGBR) knockout in endothelial cells (ECs) results in cerebrovascular lesions in the mouse embryo, the molecular mechanism by which NGBR regulates CCM1/2 expression has not been elucidated. Here, we show that genetic depletion of Ngbr in ECs at both postnatal and adult stages results in CCM1/2 expression deficiency and cerebrovascular lesions such as enlarged vessels, blood-brain-barrier hyperpermeability, and cerebral hemorrhage. To reveal the molecular mechanism, we used RNA-sequencing analysis to examine changes in the transcriptome. Surprisingly, we found that the acetyltransferase HBO1 and histone acetylation were downregulated in NGBR-deficient ECs. The mechanistic studies elucidated that NGBR is required for maintaining the expression of CCM1/2 in ECs via HBO1-mediated histone acetylation. ChIP-qPCR data further demonstrated that loss of NGBR impairs the binding of HBO1 and acetylated histone H4K5 and H4K12 on the promotor of the CCM1 and CCM2 genes. Our findings on epigenetic regulation of CCM1 and CCM2 that is modulated by NGBR and HBO1-mediated histone H4 acetylation provide a perspective on the pathogenesis of sporadic CCMs.
PMCID:9057619
PMID: 35316220
ISSN: 1558-8238
CID: 5215592

Underestimation of SARS-CoV-2 infection in placental samples [Letter]

Hanna, Nazeeh; Lin, Xinhua; Thomas, Kristen; Vintzileos, Anthony; Chavez, Martin; Palaia, Thomas; Ragolia, Louis; Verma, Sourabh; Khullar, Poonam; Hanna, Iman
PMCID:8294065
PMID: 34297970
ISSN: 1097-6868
CID: 4954872

A simple, rapid, and sensitive fluorescence-based method to assess triacylglycerol hydrolase activity

Rajan, Sujith; de Guzman, Hazel C; Palaia, Thomas; Goldberg, Ira J; Hussain, M Mahmood
Lipases constitute an important class of water-soluble enzymes that catalyze the hydrolysis of hydrophobic triacylglycerol (TAG). Their enzymatic activity is typically measured using multistep procedures involving isolation and quantification of the hydrolyzed products. We report here a new fluorescence method to measure lipase activity in real time that does not require the separation of substrates from products. We developed this method using adipose triglyceride lipase (ATGL) and lipoprotein lipase (LpL) as model lipases. We first incubated a source of ATGL or LpL with substrate vesicles containing nitrobenzoxadiazole (NBD)-labeled TAG, then measured increases in NBD fluorescence, and calculated enzyme activities. Incorporation of NBD-TAG into phosphatidylcholine (PC) vesicles resulted in some hydrolysis; however, incorporation of phosphatidylinositol into these NBD-TAG/PC vesicles and increasing the ratio of NBD-TAG to PC greatly enhanced substrate hydrolysis. This assay was also useful in measuring the activity of pancreatic lipase and hormone-sensitive lipase. Next, we tested several small-molecule lipase inhibitors and found that orlistat inhibits all lipases, indicating that it is a pan-lipase inhibitor. In short, we describe a simple, rapid, fluorescence-based triacylglycerol hydrolysis assay to assess four major TAG hydrolases: intracellular ATGL and hormone-sensitive lipase, LpL localized at the extracellular endothelium, and pancreatic lipase present in the intestinal lumen. The major advantages of this method are its speed, simplicity, and elimination of product isolation. This assay is potentially applicable to a wide range of lipases, is amenable to high-throughput screening to discover novel modulators of triacylglycerol hydrolases, and can be used for diagnostic purposes.
PMCID:8488599
PMID: 34508728
ISSN: 1539-7262
CID: 5032542

Lipocalin-type Prostaglandin D2 Synthase appears to function as a Novel Adipokine Preventing Adipose Dysfunction in response to a High Fat Diet

Srivastava, Ankita; Palaia, Thomas; Hall, Christopher; Stevenson, Matthew; Lee, Jenny; Ragolia, Louis
Adipose dysfunction is the primary defect in obesity that contributes to the development of dyslipidemia, insulin resistance, cardiovascular diseases, type 2 diabetes, non-alcoholic fatty liver disease (NAFLD) and some cancers. Previously, we demonstrated the development of NAFLD in lipocalin-type prostaglandin D2 synthase (L-PGDS) knockout mice regardless of diet. In the present study, we examined the role of L-PGDS in adipose in response to a high fat diet. We observed decreased expression of L-PGDS in adipose tissue and concomitant lower plasma levels in a dietary model of obesity as well as in insulin resistant 3T3-L1 adipocytes. We show reduced adiponectin expression and phosphorylation of AMPK in white adipose tissue of L-PGDS KO mice after 14 weeks on a high fat diet as compared to control C57BL/6 mice. We also observe an increased fat content in L-PGDS KO mice as demonstrated by adipocyte hypertrophy and increased expression of lipogenenic genes. We confirmed our in vivo findings in in vitro 3T3-L1 adipocytes, using an enzymatic inhibitor of L-PGDS (AT56). Rosiglitazone treatment drastically increased L-PGDS expression in insulin resistant 3T3-L1 adipocytes and increased adiponectin expression and AMPK phosphorylation in AT56 treated 3T3-L1 adipocytes. We conclude that the absence of L-PGDS has a deleterious effect on adipose tissue functioning, which further reduces insulin sensitivity in adipose tissue. Consequently, we propose L-PGDS appears to function as a potential member of the adipokine secretome involved in the regulation of the obesity-associated metabolic syndrome.
PMID: 34371198
ISSN: 1098-8823
CID: 5032532

RYGB Is More Effective than VSG at Protecting Mice from Prolonged High-Fat Diet Exposure: An Occasion to Roll Up Our Sleeves?

Stevenson, Matthew; Srivastava, Ankita; Lee, Jenny; Hall, Christopher; Palaia, Thomas; Lau, Raymond; Brathwaite, Collin; Ragolia, Louis
PURPOSE/OBJECTIVE:Understanding the effects of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on adipose tissue physiology is important for the treatment of obesity-related metabolic disorders. By using robust mouse models of bariatric surgery that closely resemble those performed in humans, we can compare the effects of RYGB and VSG on adipose physiology in the absence of post-operative confounds such as diet and lifestyle changes. MATERIALS AND METHODS/METHODS:RYGB and VSG were compared using a diet-induced mouse model of obesity. High-fat diet (HFD) was administered post-operatively and changes to white and brown adipose tissue were evaluated, along with alterations to weight, glucose homeostasis, dyslipidemia, and insulin sensitivity. RESULTS:After prolonged exposure to high-fat diet post-operatively, RYGB was effective in achieving sustained weight loss, while VSG unexpectedly accelerated weight gain rates. The resolution of obesity-related comorbidities such as glucose and insulin intolerance, dyslipidemia, and insulin sensitivity was improved after RYGB, but not for VSG. In RYGB, there were improvements to the function and health of white adipose tissue, enhanced brown adipose metabolism, and the browning of subcutaneous white adipose tissue, with no comparable changes seen for these factors after VSG. Some markers of systemic inflammation improved after both RYGB and VSG. CONCLUSION/CONCLUSIONS:There are significantly different effects between RYGB and VSG when HFD is administered post-operatively and robust mouse models of bariatric surgery are used. RYGB resulted in lasting physiological and metabolic changes but VSG showed little difference from that of its sham-operated, DIO counterpart.
PMID: 33856636
ISSN: 1708-0428
CID: 4889082