Searched for: in-biosketch:yes
person:af137
A left-lateralized dorsolateral prefrontal network for naming
Yu, Leyao; Dugan, Patricia; Doyle, Werner; Devinsky, Orrin; Friedman, Daniel; Flinker, Adeen
The ability to connect the form and meaning of a concept, known as word retrieval, is fundamental to human communication. While various input modalities could lead to identical word retrieval, the exact neural dynamics supporting this process relevant to daily auditory discourse remain poorly understood. Here, we recorded neurosurgical electrocorticography (ECoG) data from 48 patients and dissociated two key language networks that highly overlap in time and space, critical for word retrieval. Using unsupervised temporal clustering techniques, we found a semantic processing network located in the middle and inferior frontal gyri. This network was distinct from an articulatory planning network in the inferior frontal and precentral gyri, which was invariant to input modalities. Functionally, we confirmed that the semantic processing network encodes word surprisal during sentence perception. These findings elucidate neurophysiological mechanisms underlying the processing of semantic auditory inputs ranging from passive language comprehension to conversational speech.
PMID: 40347472
ISSN: 2211-1247
CID: 5843782
A unified acoustic-to-speech-to-language embedding space captures the neural basis of natural language processing in everyday conversations
Goldstein, Ariel; Wang, Haocheng; Niekerken, Leonard; Schain, Mariano; Zada, Zaid; Aubrey, Bobbi; Sheffer, Tom; Nastase, Samuel A; Gazula, Harshvardhan; Singh, Aditi; Rao, Aditi; Choe, Gina; Kim, Catherine; Doyle, Werner; Friedman, Daniel; Devore, Sasha; Dugan, Patricia; Hassidim, Avinatan; Brenner, Michael; Matias, Yossi; Devinsky, Orrin; Flinker, Adeen; Hasson, Uri
This study introduces a unified computational framework connecting acoustic, speech and word-level linguistic structures to study the neural basis of everyday conversations in the human brain. We used electrocorticography to record neural signals across 100 h of speech production and comprehension as participants engaged in open-ended real-life conversations. We extracted low-level acoustic, mid-level speech and contextual word embeddings from a multimodal speech-to-text model (Whisper). We developed encoding models that linearly map these embeddings onto brain activity during speech production and comprehension. Remarkably, this model accurately predicts neural activity at each level of the language processing hierarchy across hours of new conversations not used in training the model. The internal processing hierarchy in the model is aligned with the cortical hierarchy for speech and language processing, where sensory and motor regions better align with the model's speech embeddings, and higher-level language areas better align with the model's language embeddings. The Whisper model captures the temporal sequence of language-to-speech encoding before word articulation (speech production) and speech-to-language encoding post articulation (speech comprehension). The embeddings learned by this model outperform symbolic models in capturing neural activity supporting natural speech and language. These findings support a paradigm shift towards unified computational models that capture the entire processing hierarchy for speech comprehension and production in real-world conversations.
PMID: 40055549
ISSN: 2397-3374
CID: 5807992
A left-lateralized dorsolateral prefrontal network for naming
Yu, Leyao; Dugan, Patricia; Doyle, Werner; Devinsky, Orrin; Friedman, Daniel; Flinker, Adeen
The ability to connect the form and meaning of a concept, known as word retrieval, is fundamental to human communication. While various input modalities could lead to identical word retrieval, the exact neural dynamics supporting this convergence relevant to daily auditory discourse remain poorly understood. Here, we leveraged neurosurgical electrocorticographic (ECoG) recordings from 48 patients and dissociated two key language networks that highly overlap in time and space integral to word retrieval. Using unsupervised temporal clustering techniques, we found a semantic processing network located in the middle and inferior frontal gyri. This network was distinct from an articulatory planning network in the inferior frontal and precentral gyri, which was agnostic to input modalities. Functionally, we confirmed that the semantic processing network encodes word surprisal during sentence perception. Our findings characterize how humans integrate ongoing auditory semantic information over time, a critical linguistic function from passive comprehension to daily discourse.
PMCID:11118423
PMID: 38798614
ISSN: 2692-8205
CID: 5676322
Transformer-based neural speech decoding from surface and depth electrode signals
Chen, Junbo; Chen, Xupeng; Wang, Ran; Le, Chenqian; Khalilian-Gourtani, Amirhossein; Jensen, Erika; Dugan, Patricia; Doyle, Werner; Devinsky, Orrin; Friedman, Daniel; Flinker, Adeen; Wang, Yao
PMID: 39819752
ISSN: 1741-2552
CID: 5777232
From Single Words to Sentence Production: Shared Cortical Representations but Distinct Temporal Dynamics
Morgan, Adam M; Devinsky, Orrin; Doyle, Werner K; Dugan, Patricia; Friedman, Daniel; Flinker, Adeen
Sentence production is the uniquely human ability to transform complex thoughts into strings of words. Despite the importance of this process, language production research has primarily focused on single words. It remains an untested assumption that insights from this literature generalize to more naturalistic utterances like sentences. Here, we investigate this using high-resolution neurosurgical recordings (ECoG) and an overt production experiment where patients produce six words in isolation (picture naming) and in sentences (scene description). We trained machine learning models to identify the unique brain activity pattern for each word during picture naming, and used these patterns to decode which words patients were processing while they produced sentences. Our findings reveal that words share cortical representations across tasks. In sensorimotor cortex, words were consistently activated in the order in which they were said in the sentence. However, in inferior and middle frontal gyri (IFG and MFG), the order in which words were processed depended on the syntactic structure of the sentence. This dynamic interplay between sentence structure and word processing reveals that sentence production is not simply a sequence of single word production tasks, and highlights a regional division of labor within the language network. Finally, we argue that the dynamics of word processing in prefrontal cortex may impose a subtle pressure on language evolution, explaining why nearly all the world's languages position subjects before objects.
PMCID:11565881
PMID: 39554006
ISSN: 2692-8205
CID: 5766162
GroupCDL: Interpretable Denoising and Compressed Sensing MRI via Learned Group-Sparsity and Circulant Attention
Janjušević, Nikola; Khalilian-Gourtani, Amirhossein; Flinker, Adeen; Feng, Li; Wang, Yao
Nonlocal self-similarity within images has become an increasingly popular prior in deep-learning models. Despite their successful image restoration performance, such models remain largely uninterpretable due to their black-box construction. Our previous studies have shown that interpretable construction of a fully convolutional denoiser (CDLNet), with performance on par with state-of-the-art black-box counterparts, is achievable by unrolling a convolutional dictionary learning algorithm. In this manuscript, we seek an interpretable construction of a convolutional network with a nonlocal self-similarity prior that performs on par with black-box nonlocal models. We show that such an architecture can be effectively achieved by up-grading the
PMCID:11928013
PMID: 40124211
ISSN: 2573-0436
CID: 5814622
SCIENTIFIC DATA
Zada, Zaid; Nastase, Samuel; Aubrey, Bobbi; Jalon, Itamar; Michelmann, Sebastian; Wang, Haocheng; Hasenfratz, Liat; Doyle, Werner; Friedman, Daniel; Dugan, Patricia; Melloni, Lucia; Devore, Sasha; Flinker, Adeen; Devinsky, Orrin; Goldstein, Ariel; Hasson, Uri
ISI:001522914600002
CID: 5905922
A corollary discharge circuit in human speech
Khalilian-Gourtani, Amirhossein; Wang, Ran; Chen, Xupeng; Yu, Leyao; Dugan, Patricia; Friedman, Daniel; Doyle, Werner; Devinsky, Orrin; Wang, Yao; Flinker, Adeen
When we vocalize, our brain distinguishes self-generated sounds from external ones. A corollary discharge signal supports this function in animals; however, in humans, its exact origin and temporal dynamics remain unknown. We report electrocorticographic recordings in neurosurgical patients and a connectivity analysis framework based on Granger causality that reveals major neural communications. We find a reproducible source for corollary discharge across multiple speech production paradigms localized to the ventral speech motor cortex before speech articulation. The uncovered discharge predicts the degree of auditory cortex suppression during speech, its well-documented consequence. These results reveal the human corollary discharge source and timing with far-reaching implication for speech motor-control as well as auditory hallucinations in human psychosis.
PMCID:11648673
PMID: 39625978
ISSN: 1091-6490
CID: 5780132
Scale matters: Large language models with billions (rather than millions) of parameters better match neural representations of natural language
Hong, Zhuoqiao; Wang, Haocheng; Zada, Zaid; Gazula, Harshvardhan; Turner, David; Aubrey, Bobbi; Niekerken, Leonard; Doyle, Werner; Devore, Sasha; Dugan, Patricia; Friedman, Daniel; Devinsky, Orrin; Flinker, Adeen; Hasson, Uri; Nastase, Samuel A; Goldstein, Ariel
Recent research has used large language models (LLMs) to study the neural basis of naturalistic language processing in the human brain. LLMs have rapidly grown in complexity, leading to improved language processing capabilities. However, neuroscience researchers haven't kept up with the quick progress in LLM development. Here, we utilized several families of transformer-based LLMs to investigate the relationship between model size and their ability to capture linguistic information in the human brain. Crucially, a subset of LLMs were trained on a fixed training set, enabling us to dissociate model size from architecture and training set size. We used electrocorticography (ECoG) to measure neural activity in epilepsy patients while they listened to a 30-minute naturalistic audio story. We fit electrode-wise encoding models using contextual embeddings extracted from each hidden layer of the LLMs to predict word-level neural signals. In line with prior work, we found that larger LLMs better capture the structure of natural language and better predict neural activity. We also found a log-linear relationship where the encoding performance peaks in relatively earlier layers as model size increases. We also observed variations in the best-performing layer across different brain regions, corresponding to an organized language processing hierarchy.
PMCID:11244877
PMID: 39005394
ISSN: 2692-8205
CID: 5676342
Author Correction: Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns
Goldstein, Ariel; Grinstein-Dabush, Avigail; Schain, Mariano; Wang, Haocheng; Hong, Zhuoqiao; Aubrey, Bobbi; Nastase, Samuel A; Zada, Zaid; Ham, Eric; Feder, Amir; Gazula, Harshvardhan; Buchnik, Eliav; Doyle, Werner; Devore, Sasha; Dugan, Patricia; Reichart, Roi; Friedman, Daniel; Brenner, Michael; Hassidim, Avinatan; Devinsky, Orrin; Flinker, Adeen; Hasson, Uri
PMID: 39353920
ISSN: 2041-1723
CID: 5739352