Searched for: in-biosketch:yes
person:at570
Metabolic coordination between skin epithelium and type 17 immunity sustains chronic skin inflammation
Subudhi, Ipsita; Konieczny, Piotr; Prystupa, Aleksandr; Castillo, Rochelle L; Sze-Tu, Erica; Xing, Yue; Rosenblum, Daniel; Reznikov, Ilana; Sidhu, Ikjot; Loomis, Cynthia; Lu, Catherine P; Anandasabapathy, Niroshana; Suárez-Fariñas, Mayte; Gudjonsson, Johann E; Tsirigos, Aristotelis; Scher, Jose U; Naik, Shruti
Inflammatory epithelial diseases are spurred by the concomitant dysregulation of immune and epithelial cells. How these two dysregulated cellular compartments simultaneously sustain their heightened metabolic demands is unclear. Single-cell and spatial transcriptomics (ST), along with immunofluorescence, revealed that hypoxia-inducible factor 1α (HIF1α), downstream of IL-17 signaling, drove psoriatic epithelial remodeling. Blocking HIF1α in human psoriatic lesions ex vivo impaired glycolysis and phenocopied anti-IL-17 therapy. In a murine model of skin inflammation, epidermal-specific loss of HIF1α or its target gene, glucose transporter 1, ameliorated epidermal, immune, vascular, and neuronal pathology. Mechanistically, glycolysis autonomously fueled epithelial pathology and enhanced lactate production, which augmented the γδ T17 cell response. RORγt-driven genetic deletion or pharmacological inhibition of either lactate-producing enzymes or lactate transporters attenuated epithelial pathology and IL-17A expression in vivo. Our findings identify a metabolic hierarchy between epithelial and immune compartments and the consequent coordination of metabolic processes that sustain inflammatory disease.
PMID: 38772365
ISSN: 1097-4180
CID: 5654422
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides
Claudio Quiros, Adalberto; Coudray, Nicolas; Yeaton, Anna; Yang, Xinyu; Liu, Bojing; Le, Hortense; Chiriboga, Luis; Karimkhan, Afreen; Narula, Navneet; Moore, David A; Park, Christopher Y; Pass, Harvey; Moreira, Andre L; Le Quesne, John; Tsirigos, Aristotelis; Yuan, Ke
Cancer diagnosis and management depend upon the extraction of complex information from microscopy images by pathologists, which requires time-consuming expert interpretation prone to human bias. Supervised deep learning approaches have proven powerful, but are inherently limited by the cost and quality of annotations used for training. Therefore, we present Histomorphological Phenotype Learning, a self-supervised methodology requiring no labels and operating via the automatic discovery of discriminatory features in image tiles. Tiles are grouped into morphologically similar clusters which constitute an atlas of histomorphological phenotypes (HP-Atlas), revealing trajectories from benign to malignant tissue via inflammatory and reactive phenotypes. These clusters have distinct features which can be identified using orthogonal methods, linking histologic, molecular and clinical phenotypes. Applied to lung cancer, we show that they align closely with patient survival, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype. These properties are maintained in a multi-cancer study.
PMID: 38862472
ISSN: 2041-1723
CID: 5669022
Genome-wide screening identifies Trim33 as an essential regulator of dendritic cell differentiation
Tiniakou, Ioanna; Hsu, Pei-Feng; Lopez-Zepeda, Lorena S; Garipler, Görkem; Esteva, Eduardo; Adams, Nicholas M; Jang, Geunhyo; Soni, Chetna; Lau, Colleen M; Liu, Fan; Khodadadi-Jamayran, Alireza; Rodrick, Tori C; Jones, Drew; Tsirigos, Aristotelis; Ohler, Uwe; Bedford, Mark T; Nimer, Stephen D; Kaartinen, Vesa; Mazzoni, Esteban O; Reizis, Boris
The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.
PMID: 38608038
ISSN: 2470-9468
CID: 5646772
Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer
Pillai, Ray; LeBoeuf, Sarah E; Hao, Yuan; New, Connie; Blum, Jenna L E; Rashidfarrokhi, Ali; Huang, Shih Ming; Bahamon, Christian; Wu, Warren L; Karadal-Ferrena, Burcu; Herrera, Alberto; Ivanova, Ellie; Cross, Michael; Bossowski, Jozef P; Ding, Hongyu; Hayashi, Makiko; Rajalingam, Sahith; Karakousi, Triantafyllia; Sayin, Volkan I; Khanna, Kamal M; Wong, Kwok-Kin; Wild, Robert; Tsirigos, Aristotelis; Poirier, John T; Rudin, Charles M; Davidson, Shawn M; Koralov, Sergei B; Papagiannakopoulos, Thales
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.
PMID: 38536921
ISSN: 2375-2548
CID: 5644942
Self-Supervised Learning Reveals Clinically Relevant Histomorphological Patterns for Therapeutic Strategies in Colon Cancer
Liu, Bojing; Polack, Meaghan; Coudray, Nicolas; Quiros, Adalberto Claudio; Sakellaropoulos, Theodoros; Crobach, Augustinus S L P; van Krieken, J Han J M; Yuan, Ke; Tollenaar, Rob A E M; Mesker, Wilma E; Tsirigos, Aristotelis
Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features on unannotated hematoxylin-and-eosin-stained whole-slide images (WSIs). We trained an SSL Barlow Twins-encoder on 435 TCGA colon adenocarcinoma WSIs to extract features from small image patches. Leiden community detection then grouped tiles into histomorphological phenotype clusters (HPCs). HPC reproducibility and predictive ability for overall survival was confirmed in an independent clinical trial cohort (N=1213 WSIs). This unbiased atlas resulted in 47 HPCs displaying unique and sharing clinically significant histomorphological traits, highlighting tissue type, quantity, and architecture, especially in the context of tumor stroma. Through in-depth analysis of these HPCs, including immune landscape and gene set enrichment analysis, and association to clinical outcomes, we shed light on the factors influencing survival and responses to treatments like standard adjuvant chemotherapy and experimental therapies. Further exploration of HPCs may unveil new insights and aid decision-making and personalized treatments for colon cancer patients.
PMCID:10942268
PMID: 38496571
CID: 5640072
SETD2 mutations do not contribute to clonal fitness in response to chemotherapy in childhood B cell acute lymphoblastic leukemia
Contreras Yametti, Gloria P; Robbins, Gabriel; Chowdhury, Ashfiyah; Narang, Sonali; Ostrow, Talia H; Kilberg, Harrison; Greenberg, Joshua; Kramer, Lindsay; Raetz, Elizabeth; Tsirigos, Aristotelis; Evensen, Nikki A; Carroll, William L
Mutations in genes encoding epigenetic regulators are commonly observed at relapse in B cell acute lymphoblastic leukemia (B-ALL). Loss-of-function mutations in SETD2, an H3K36 methyltransferase, have been observed in B-ALL and other cancers. Previous studies on mutated SETD2 in solid tumors and acute myelogenous leukemia support a role in promoting resistance to DNA damaging agents. We did not observe chemoresistance, an impaired DNA damage response, nor increased mutation frequency in response to thiopurines using CRISPR-mediated knockout in wild-type B-ALL cell lines. Likewise, restoration of SETD2 in cell lines with hemizygous mutations did not increase sensitivity. SETD2 mutations affected the chromatin landscape and transcriptional output that was unique to each cell line. Collectively our data does not support a role for SETD2 mutations in driving clonal evolution and relapse in B-ALL, which is consistent with the lack of enrichment of SETD2 mutations at relapse in most studies.
PMID: 37874744
ISSN: 1029-2403
CID: 5635112
3D Enhancer-promoter networks provide predictive features for gene expression and coregulation in early embryonic lineages
Murphy, Dylan; Salataj, Eralda; Di Giammartino, Dafne Campigli; Rodriguez-Hernaez, Javier; Kloetgen, Andreas; Garg, Vidur; Char, Erin; Uyehara, Christopher M; Ee, Ly-Sha; Lee, UkJin; Stadtfeld, Matthias; Hadjantonakis, Anna-Katerina; Tsirigos, Aristotelis; Polyzos, Alexander; Apostolou, Effie
Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages: the trophectoderm, the epiblast and the primitive endoderm. Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements through which transcriptional regulators enact these fates remain understudied. Here, we characterize, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observe extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although distinct groups of genes are irresponsive to topological changes. In each lineage, a high degree of connectivity, or 'hubness', positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a predictive model for transcriptional regulation (3D-HiChAT) that outperforms models using only 1D promoter or proximal variables to predict levels and cell-type specificity of gene expression. Using 3D-HiChAT, we identify, in silico, candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments, we validate several enhancers that control gene expression in their respective lineages. Our study identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to comprehensively understand lineage-specific transcriptional behaviors.
PMID: 38053013
ISSN: 1545-9985
CID: 5595532
KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance
Zavitsanou, Anastasia-Maria; Pillai, Ray; Hao, Yuan; Wu, Warren L; Bartnicki, Eric; Karakousi, Triantafyllia; Rajalingam, Sahith; Herrera, Alberto; Karatza, Angeliki; Rashidfarrokhi, Ali; Solis, Sabrina; Ciampricotti, Metamia; Yeaton, Anna H; Ivanova, Ellie; Wohlhieter, Corrin A; Buus, Terkild B; Hayashi, Makiko; Karadal-Ferrena, Burcu; Pass, Harvey I; Poirier, John T; Rudin, Charles M; Wong, Kwok-Kin; Moreira, Andre L; Khanna, Kamal M; Tsirigos, Aristotelis; Papagiannakopoulos, Thales; Koralov, Sergei B
Lung cancer treatment has benefited greatly through advancements in immunotherapies. However, immunotherapy often fails in patients with specific mutations like KEAP1, which are frequently found in lung adenocarcinoma. We established an antigenic lung cancer model and used it to explore how Keap1 mutations remodel the tumor immune microenvironment. Using single-cell technology and depletion studies, we demonstrate that Keap1-mutant tumors diminish dendritic cell and T cell responses driving immunotherapy resistance. This observation was corroborated in patient samples. CRISPR-Cas9-mediated gene targeting revealed that hyperactivation of the NRF2 antioxidant pathway is responsible for diminished immune responses in Keap1-mutant tumors. Importantly, we demonstrate that combining glutaminase inhibition with immune checkpoint blockade can reverse immunosuppression, making Keap1-mutant tumors susceptible to immunotherapy. Our study provides new insight into the role of KEAP1 mutations in immune evasion, paving the way for novel immune-based therapeutic strategies for KEAP1-mutant cancers.
PMID: 37889752
ISSN: 2211-1247
CID: 5590262
An Anterior Second Heart Field Enhancer Regulates the Gene Regulatory Network of the Cardiac Outflow Tract
Yamaguchi, Naoko; Chang, Ernest W; Lin, Ziyan; Shekhar, Akshay; Bu, Lei; Khodadadi-Jamayran, Alireza; Tsirigos, Aristotelis; Cen, Yiyun; Phoon, Colin K L; Moskowitz, Ivan P; Park, David S
BACKGROUND/UNASSIGNED:Conotruncal defects due to developmental abnormalities of the outflow tract (OFT) are an important cause of cyanotic congenital heart disease. Dysregulation of transcriptional programs tuned by NKX2-5 (NK2 homeobox 5), GATA6 (GATA binding protein 6), and TBX1 (T-box transcription factor 1) have been implicated in abnormal OFT morphogenesis. However, there remains no consensus on how these transcriptional programs function in a unified gene regulatory network within the OFT. METHODS/UNASSIGNED: RESULTS/UNASSIGNED: CONCLUSIONS/UNASSIGNED:Our results using human and mouse models reveal an essential gene regulatory network of the OFT that requires an anterior second heart field enhancer to link GATA6 with NKX2-5-dependent rotation and septation gene programs.
PMID: 37772400
ISSN: 1524-4539
CID: 5606412
Inflammation in the tumor-adjacent lung as a predictor of clinical outcome in lung adenocarcinoma
Dolgalev, Igor; Zhou, Hua; Murrell, Nina; Le, Hortense; Sakellaropoulos, Theodore; Coudray, Nicolas; Zhu, Kelsey; Vasudevaraja, Varshini; Yeaton, Anna; Goparaju, Chandra; Li, Yonghua; Sulaiman, Imran; Tsay, Jun-Chieh J; Meyn, Peter; Mohamed, Hussein; Sydney, Iris; Shiomi, Tomoe; Ramaswami, Sitharam; Narula, Navneet; Kulicke, Ruth; Davis, Fred P; Stransky, Nicolas; Smolen, Gromoslaw A; Cheng, Wei-Yi; Cai, James; Punekar, Salman; Velcheti, Vamsidhar; Sterman, Daniel H; Poirier, J T; Neel, Ben; Wong, Kwok-Kin; Chiriboga, Luis; Heguy, Adriana; Papagiannakopoulos, Thales; Nadorp, Bettina; Snuderl, Matija; Segal, Leopoldo N; Moreira, Andre L; Pass, Harvey I; Tsirigos, Aristotelis
Approximately 30% of early-stage lung adenocarcinoma patients present with disease progression after successful surgical resection. Despite efforts of mapping the genetic landscape, there has been limited success in discovering predictive biomarkers of disease outcomes. Here we performed a systematic multi-omic assessment of 143 tumors and matched tumor-adjacent, histologically-normal lung tissue with long-term patient follow-up. Through histologic, mutational, and transcriptomic profiling of tumor and adjacent-normal tissue, we identified an inflammatory gene signature in tumor-adjacent tissue as the strongest clinical predictor of disease progression. Single-cell transcriptomic analysis demonstrated the progression-associated inflammatory signature was expressed in both immune and non-immune cells, and cell type-specific profiling in monocytes further improved outcome predictions. Additional analyses of tumor-adjacent transcriptomic data from The Cancer Genome Atlas validated the association of the inflammatory signature with worse outcomes across cancers. Collectively, our study suggests that molecular profiling of tumor-adjacent tissue can identify patients at high risk for disease progression.
PMCID:10632519
PMID: 37938580
ISSN: 2041-1723
CID: 5609852