Searched for: in-biosketch:yes
person:berena03
Direct effects of transcranial electric stimulation on brain circuits in rats and humans
Voroslakos, Mihaly; Takeuchi, Yuichi; Brinyiczki, Kitti; Zombori, Tamas; Oliva, Azahara; Fernandez-Ruiz, Antonio; Kozak, Gabor; Kincses, Zsigmond Tamas; Ivanyi, Bela; Buzsaki, Gyorgy; Berenyi, Antal
Transcranial electric stimulation is a non-invasive tool that can influence brain activity; however, the parameters necessary to affect local circuits in vivo remain to be explored. Here, we report that in rodents and human cadaver brains, ~75% of scalp-applied currents are attenuated by soft tissue and skull. Using intracellular and extracellular recordings in rats, we find that at least 1 mV/mm voltage gradient is necessary to affect neuronal spiking and subthreshold currents. We designed an 'intersectional short pulse' stimulation method to inject sufficiently high current intensities into the brain, while keeping the charge density and sensation on the scalp surface relatively low. We verify the regional specificity of this novel method in rodents; in humans, we demonstrate how it affects the amplitude of simultaneously recorded EEG alpha waves. Our combined results establish that neuronal circuits are instantaneously affected by intensity currents that are higher than those used in conventional protocols.
PMCID:5797140
PMID: 29396478
ISSN: 2041-1723
CID: 2995512
Sustained efficacy of closed loop electrical stimulation for long-term treatment of absence epilepsy in rats
Kozak, Gabor; Berenyi, Antal
Closed-loop brain stimulation is a promising alternative to treat drug-resistant epilepsies. In contrast to optogenetic interventions, transcranial electrical stimulation (TES) does not require cellular modification of neurons to be effective, and it is less invasive compared to deep brain stimulation. Furthermore, on-demand TES of targeted brain regions allows the potential for normal function of these networks during interictal periods, a possibility that is eliminated by resective surgical treatment approaches. To further explore the translation of closed-loop TES for treatment of epilepsy, we show here for the first time that unsupervised closed-loop TES in rats can consistently interrupt seizures for 6 weeks and has the potential to control seizure activity up to 4 months (longest periods examined). On-demand TES significantly reduced the time spent in seizure and the individual seizure duration, although significantly higher seizure rate was observed during the treatment. The 6 week long stimulation had no residual adverse effects on the electrophysiologic characteristics of the brain after the termination of the treatment and did not induce glial remodelling in the brain. Our findings demonstrate the safety and effectiveness of minimally invasive, potentially lifelong TES treatment of epilepsy either alone or as a complement to drug treatments.
PMCID:5524708
PMID: 28740261
ISSN: 2045-2322
CID: 2995522
Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling
Fernandez-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergo A; Maurer, Andrew P; Berenyi, Antal; Buzsaki, Gyorgy
Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation.
PMCID:5373668
PMID: 28279355
ISSN: 1097-4199
CID: 2491962
Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions
Oliva, Azahara; Fernandez-Ruiz, Antonio; Buzsaki, Gyorgy; Berenyi, Antal
It is well-established that the feed-forward connected main hippocampal areas, CA3, CA2, and CA1 work cooperatively during spatial navigation and memory. These areas are similar in terms of the prevalent types of neurons; however, they display different spatial coding and oscillatory dynamics. Understanding the temporal dynamics of these operations requires simultaneous recordings from these regions. However, simultaneous recordings from multiple regions and subregions in behaving animals have become possible only recently. We performed large-scale silicon probe recordings simultaneously spanning across all layers of CA1, CA2, and CA3 regions in rats during spatial navigation and sleep and compared their behavior-dependent spiking, oscillatory dynamics and functional connectivity. The accuracy of place cell spatial coding increased progressively from distal to proximal CA1, suddenly dropped in CA2, and increased again from CA3a toward CA3c. These variations can be attributed in part to the different entorhinal inputs to each subregions, and the differences in theta modulation of CA1, CA2, and CA3 neurons. We also found that neurons in the subregions showed differences in theta modulation, phase precession, state-dependent changes in firing rates and functional connectivity among neurons of these regions. Our results indicate that a combination of intrinsic properties together with distinct intra- and extra-hippocampal inputs may account for the subregion-specific modulation of spiking dynamics and spatial tuning of neurons during behavior. (c) 2016 Wiley Periodicals, Inc.
PMID: 27650887
ISSN: 1098-1063
CID: 2367062
Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples
Oliva, Azahara; Fernandez-Ruiz, Antonio; Buzsaki, Gyorgy; Berenyi, Antal
Sharp-wave ripples (SPW-Rs) in the hippocampus are implied in memory consolidation, as shown by observational and interventional experiments. However, the mechanism of their generation remains unclear. Using two-dimensional silicon probe arrays, we investigated the propagation of SPW-Rs across the hippocampal CA1, CA2, and CA3 subregions. Synchronous activation of CA2 ensembles preceded SPW-R-related population activity in CA3 and CA1 regions. Deep CA2 neurons gradually increased their activity prior to ripples and were suppressed during the population bursts of CA3-CA1 neurons (ramping cells). Activity of superficial CA2 cells preceded the activity surge in CA3-CA1 (phasic cells). The trigger role of the CA2 region in SPW-R was more pronounced during waking than sleeping. These results point to the CA2 region as an initiation zone for SPW-Rs.
PMID: 27593179
ISSN: 1097-4199
CID: 2317682
Neocortical gamma oscillations in idiopathic generalized epilepsy
Benedek, Krisztina; Berenyi, Antal; Gombkoto, Peter; Piilgaard, Henning; Lauritzen, Martin
OBJECTIVE: Absence seizures in patients with idiopathic generalized epilepsy (IGE) may in part be explained by a decrease in phasic GABAA (type-A gamma-aminobutyric acid) receptor function, but the mechanisms are only partly understood. Here we studied the relation between ictal and interictal spike-wave discharges (SWDs) and electroencephalography (EEG) gamma oscillatory activity (30-60 Hz) in patients with IGE. METHODS: EEG recordings were obtained of 14 children with IGE (mean age, 8.5 +/- 5 years) and 14 age- and sex-matched controls. Time-frequency analysis of each seizure and seizure-free control epochs was performed and cross-coherences of neocortical gamma oscillations were calculated to describe interictal and ictal characteristics of generalized seizures. RESULTS: SWDs were characterized with an abrupt increase of oscillatory activity of 3-4 and 13-60 Hz, peaking at 3-4 and 30-60 Hz, and with a simultaneous decrease in the 8-12 Hz frequency band. The rise in EEG gamma oscillations was short-lasting and decreased before activity declined at lower frequency ranges. Compared to control patients, patients with epilepsy also showed higher interictal values of mean coherence of gamma activity, but this interictal increase was not significant after post hoc analysis. SIGNIFICANCE: Our data support the hypothesis that gamma oscillatory activity increase concomitantly with rises in activity of lower EEG frequencies during absence seizures and that the activity starts to cease earlier than lower EEG frequencies. The data did not support a change in gamma activity preceding the 3-4 Hz SWDs. SWDs are hypothetically generated by the synchronous interaction between the thalamus and the cortex, whereas the production of gamma activity is the result of activity in local inhibitory networks. Thus, the modification of SWD by gamma activity may be understood in terms of the cellular and synaptic mechanisms involved.
PMID: 26996827
ISSN: 1528-1167
CID: 2051942
Tools for Probing Local Circuits: High-Density Silicon Probes Combined with Optogenetics
Buzsaki, Gyorgy; Stark, Eran; Berenyi, Antal; Khodagholy, Dion; Kipke, Daryl R; Yoon, Euisik; Wise, Kensall D
To understand how function arises from the interactions between neurons, it is necessary to use methods that allow the monitoring of brain activity at the single-neuron, single-spike level and the targeted manipulation of the diverse neuron types selectively in a closed-loop manner. Large-scale recordings of neuronal spiking combined with optogenetic perturbation of identified individual neurons has emerged as a suitable method for such tasks in behaving animals. To fully exploit the potential power of these methods, multiple steps of technical innovation are needed. We highlight the current state of the art in electrophysiological recording methods, combined with optogenetics, and discuss directions for progress. In addition, we point to areas where rapid development is in progress and discuss topics where near-term improvements are possible and needed.
PMCID:4392339
PMID: 25856489
ISSN: 1097-4199
CID: 1528692
Theta Phase Segregation of Input-Specific Gamma Patterns in Entorhinal-Hippocampal Networks
Schomburg, Erik W; Fernandez-Ruiz, Antonio; Mizuseki, Kenji; Berenyi, Antal; Anastassiou, Costas A; Koch, Christof; Buzsaki, Gyorgy
Precisely how rhythms support neuronal communication remains obscure. We investigated interregional coordination of gamma oscillations using high-density electrophysiological recordings in the rat hippocampus and entorhinal cortex. We found that 30-80 Hz gamma dominated CA1 local field potentials (LFPs) on the descending phase of CA1 theta waves during navigation, with 60-120 Hz gamma at the theta peak. These signals corresponded to CA3 and entorhinal input, respectively. Above 50 Hz, interregional phase-synchronization of principal cell spikes occurred mostly for LFPs in the axonal target domain. CA1 pyramidal cells were phase-locked mainly to fast gamma (>100 Hz) LFP patterns restricted to CA1, which were strongest at the theta trough. While theta phase coordination of spiking across entorhinal-hippocampal regions depended on memory demands, LFP gamma patterns below 100 Hz in the hippocampus were consistently layer specific and largely reflected afferent activity. Gamma synchronization as a mechanism for interregional communication thus rapidly loses efficacy at higher frequencies.
PMCID:4253689
PMID: 25263753
ISSN: 0896-6273
CID: 1259962
Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus
Vandecasteele, Marie; Varga, Viktor; Berenyi, Antal; Papp, Edit; Bartho, Peter; Venance, Laurent; Freund, Tamas F; Buzsaki, Gyorgy
Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.
PMCID:4169920
PMID: 25197052
ISSN: 0027-8424
CID: 1181322
Spatially distributed local fields in the hippocampus encode rat position
Agarwal, Gautam; Stevenson, Ian H; Berenyi, Antal; Mizuseki, Kenji; Buzsaki, Gyorgy; Sommer, Friedrich T
Although neuronal spikes can be readily detected from extracellular recordings, synaptic and subthreshold activity remains undifferentiated within the local field potential (LFP). In the hippocampus, neurons discharge selectively when the rat is at certain locations, while LFPs at single anatomical sites exhibit no such place-tuning. Nonetheless, because the representation of position is sparse and distributed, we hypothesized that spatial information can be recovered from multiple-site LFP recordings. Using high-density sampling of LFP and computational methods, we show that the spatiotemporal structure of the theta rhythm can encode position as robustly as neuronal spiking populations. Because our approach exploits the rhythmicity and sparse structure of neural activity, features found in many brain regions, it is useful as a general tool for discovering distributed LFP codes.
PMCID:4909490
PMID: 24812401
ISSN: 0036-8075
CID: 967982