Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:chent15

Total Results:

69


ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer

Deng, Jiehui; Thennavan, Aatish; Dolgalev, Igor; Chen, Ting; Li, Jie; Marzio, Antonio; Poirier, John T; Peng, David; Bulatovic, Mirna; Mukhopadhyay, Subhadip; Silver, Heather; Papadopoulos, Eleni; Pyon, Val; Thakurdin, Cassandra; Han, Han; Li, Fei; Li, Shuai; Ding, Hailin; Hu, Hai; Pan, Yuanwang; Weerasekara, Vajira; Jiang, Baishan; Wang, Eric S; Ahearn, Ian; Philips, Mark; Papagiannakopoulos, Thales; Tsirigos, Aristotelis; Rothenberg, Eli; Gainor, Justin; Freeman, Gordon J; Rudin, Charles M; Gray, Nathanael S; Hammerman, Peter S; Pagano, Michele; Heymach, John V; Perou, Charles M; Bardeesy, Nabeel; Wong, Kwok-Kin
PMCID:8205437
PMID: 34142094
ISSN: 2662-1347
CID: 4917722

SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling

Fedele, Carmine; Li, Shuai; Teng, Kai Wen; Foster, Connor J R; Peng, David; Ran, Hao; Mita, Paolo; Geer, Mitchell J; Hattori, Takamitsu; Koide, Akiko; Wang, Yubao; Tang, Kwan Ho; Leinwand, Joshua; Wang, Wei; Diskin, Brian; Deng, Jiehui; Chen, Ting; Dolgalev, Igor; Ozerdem, Ugur; Miller, George; Koide, Shohei; Wong, Kwok-Kin; Neel, Benjamin G
KRAS is the most frequently mutated human oncogene, and KRAS inhibition has been a longtime goal. Recently, inhibitors were developed that bind KRASG12C-GDP and react with Cys-12 (G12C-Is). Using new affinity reagents to monitor KRASG12C activation and inhibitor engagement, we found that an SHP2 inhibitor (SHP2-I) increases KRAS-GDP occupancy, enhancing G12C-I efficacy. The SHP2-I abrogated RTK feedback signaling and adaptive resistance to G12C-Is in vitro, in xenografts, and in syngeneic KRASG12C-mutant pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). SHP2-I/G12C-I combination evoked favorable but tumor site-specific changes in the immune microenvironment, decreasing myeloid suppressor cells, increasing CD8+ T cells, and sensitizing tumors to PD-1 blockade. Experiments using cells expressing inhibitor-resistant SHP2 showed that SHP2 inhibition in PDAC cells is required for PDAC regression and remodeling of the immune microenvironment but revealed direct inhibitory effects on tumor angiogenesis and vascularity. Our results demonstrate that SHP2-I/G12C-I combinations confer a substantial survival benefit in PDAC and NSCLC and identify additional potential combination strategies.
PMID: 33045063
ISSN: 1540-9538
CID: 4632492

RIP1 Kinase Drives Macrophage-Mediated Adaptive Immune Tolerance in Pancreatic Cancer

Wang, Wei; Marinis, Jill M; Beal, Allison M; Savadkar, Shivraj; Wu, Yue; Khan, Mohammed; Taunk, Pardeep S; Wu, Nan; Su, Wenyu; Wu, Jingjing; Ahsan, Aarif; Kurz, Emma; Chen, Ting; Yaboh, Inedouye; Li, Fei; Gutierrez, Johana; Diskin, Brian; Hundeyin, Mautin; Reilly, Michael; Lich, John D; Harris, Philip A; Mahajan, Mukesh K; Thorpe, James H; Nassau, Pamela; Mosley, Julie E; Leinwand, Joshua; Kochen Rossi, Juan A; Mishra, Ankita; Aykut, Berk; Glacken, Michael; Ochi, Atsuo; Verma, Narendra; Kim, Jacqueline I; Vasudevaraja, Varshini; Adeegbe, Dennis; Almonte, Christina; Bagdatlioglu, Ece; Cohen, Deirdre J; Wong, Kwok-Kin; Bertin, John; Miller, George
PMID: 33049209
ISSN: 1878-3686
CID: 4632692

Epigenetic CRISPR screens identify Npm1 as a therapeutic vulnerability in non-small cell lung cancer

Li, Fei; Ng, Wai-Lung; Luster, Troy A; Hu, Hai; Sviderskiy, Vladislav O; Dowling, Catríona M; Hollinshead, Kate E R; Zouitine, Paula; Zhang, Hua; Huang, Qingyuan; Ranieri, Michela; Wang, Wei; Fang, Zhaoyuan; Chen, Ting; Deng, Jiehui; Zhao, Kai; So, Hon-Cheong; Khodadadi-Jamayran, Alireza; Xu, Mousheng; Karatza, Angeliki; Pyon, Val; Li, Shuai; Pan, Yuanwang; Labbe, Kristen; Almonte, Christina; Poirier, John T; Miller, George; Possemato, Richard; Qi, Jun; Wong, Kwok-Kin
Despite advancements in treatment options, the overall cure and survival rates for non-small cell lung cancers (NSCLC) remain low. While small-molecule inhibitors of epigenetic regulators have recently emerged as promising cancer therapeutics, their application in patients with NSCLC is limited. To exploit epigenetic regulators as novel therapeutic targets in NSCLC, we performed pooled epigenome-wide CRISPR knockout screens in vitro and in vivo and identified the histone chaperone nucleophosmin 1 (NPM1) as a potential therapeutic target. Genetic ablation of Npm1 significantly attenuated tumor progression in vitro and in vivo. Furthermore, KRAS-mutant cancer cells were more addicted to NPM1 expression. Genetic ablation of Npm1 rewired the balance of metabolism in cancer cells from predominant aerobic glycolysis to oxidative phosphorylation and reduced the population of tumor-propagating cells. Overall, our results support NPM1 as a therapeutic vulnerability in NSCLC.
PMID: 32646968
ISSN: 1538-7445
CID: 4518022

Generation of genetically engineered mouse lung organoid models for squamous cell lung cancers allows for the study of combinatorial immunotherapy

Hai, Josephine; Zhang, Hua; Zhou, Jin; Wu, Zhong; Chen, Ting; Papadopoulos, Eleni; Dowling, Catríona M; Pyon, Val; Pan, Yuanwang; Liu, Jie B; Bronson, Roderick T; Silver, Heather; Lizotte, Patrick H; Deng, Jiehui; Campbell, Joshua D; Sholl, Lynette M; Ng, Christine; Tsao, Ming-Sound; Thakurdin, Cassandra; Bass, Adam J; Wong, Kwok-Kin
PURPOSE/OBJECTIVE:Lung squamous cell carcinoma (LSCC) is a deadly disease for which only a subset of patients responds to immune checkpoint blockade (ICB) therapy. Therefore, preclinical mouse models that recapitulate the complex genetic profile found in patients are urgently needed. EXPERIMENTAL DESIGN/METHODS:We used CRISPR genome editing to delete multiple tumor suppressors in lung organoids derived from Cre-dependent SOX2 knock-in mice. We investigated both the therapeutic efficacy and immunological effects accompanying combination PD-1 blockade and WEE1 inhibition in both mouse models and LSCC patient-derived cell lines. RESULTS:We show that multiplex gene editing of mouse lung organoids using the CRISPR-Cas9 system allows for efficient and rapid means to generate LSCCs that closely mimic the human disease at the genomic and phenotypic level. Using this genetically-defined mouse model and three-dimensional tumoroid culture system, we show that WEE1 inhibition induces DNA damage that primes the endogenous type I interferon and antigen presentation system in primary LSCC tumor cells. These events promote cytotoxic T cell-mediated clearance of tumor cells and reduce the accumulation of tumor-infiltrating neutrophils. Beneficial immunological features of WEE1 inhibition are further enhanced by the addition of anti-PD-1 therapy. CONCLUSIONS:We developed a mouse model system to investigate a novel combinatory approach that illuminates a clinical path hypothesis for combining ICB with DNA damage-inducing therapies in the treatment of LSCC.
PMID: 32209571
ISSN: 1078-0432
CID: 4358482

Use of ex vivo patient derived tumor organotypic spheroids to identify combination therapies for HER2mutant non small cell lung cancer

Ivanova, Elena; Kuraguchi, Mari; Xu, Man; Portell, Andrew; Taus, Luke J; Diala, Irmina; Lalani, Alshad S; Choi, Jihyun; Chambers, Emily S; Li, Shuai; Liu, Shengwu; Chen, Ting; Barbie, Thanh U; Oxnard, Geoffrey R; Haworth, Jacob; Wong, Kwok-Kin; Dahlberg, Suzanne E; Aref, Amir; Barbie, David A; Bahcall, Magda; Paweletz, Cloud P; Janne, Pasi A
PURPOSE/OBJECTIVE:system. EXPERIMENTAL DESIGN/METHODS:genetically engineered mouse model (GEMM). RESULTS:was more effective compared to single agent neratinib or trastuzumab and was associated with more robust inhibition of HER2 and downstream signaling. CONCLUSIONS:using PDX tumors. This approach may accelerate the identification and clinical development of therapies for targets with no or few existing models and/or therapies.
PMID: 32034078
ISSN: 1078-0432
CID: 4301622

PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer

Diskin, Brian; Adam, Salma; Cassini, Marcelo F; Sanchez, Gustavo; Liria, Miguel; Aykut, Berk; Buttar, Chandan; Li, Eric; Sundberg, Belen; Salas, Ruben D; Chen, Ruonan; Wang, Junjie; Kim, Mirhee; Farooq, Mohammad Saad; Nguy, Susanna; Fedele, Carmine; Tang, Kwan Ho; Chen, Ting; Wang, Wei; Hundeyin, Mautin; Rossi, Juan A Kochen; Kurz, Emma; Haq, Muhammad Israr Ul; Karlen, Jason; Kruger, Emma; Sekendiz, Zennur; Wu, Dongling; Shadaloey, Sorin A A; Baptiste, Gillian; Werba, Gregor; Selvaraj, Shanmugapriya; Loomis, Cynthia; Wong, Kwok-Kin; Leinwand, Joshua; Miller, George
Programmed cell death protein 1 (PD-1) ligation delimits immunogenic responses in T cells. However, the consequences of programmed cell death 1 ligand 1 (PD-L1) ligation in T cells are uncertain. We found that T cell expression of PD-L1 in cancer was regulated by tumor antigen and sterile inflammatory cues. PD-L1+ T cells exerted tumor-promoting tolerance via three distinct mechanisms: (1) binding of PD-L1 induced STAT3-dependent 'back-signaling' in CD4+ T cells, which prevented activation, reduced TH1-polarization and directed TH17-differentiation. PD-L1 signaling also induced an anergic T-bet-IFN-γ- phenotype in CD8+ T cells and was equally suppressive compared to PD-1 signaling; (2) PD-L1+ T cells restrained effector T cells via the canonical PD-L1-PD-1 axis and were sufficient to accelerate tumorigenesis, even in the absence of endogenous PD-L1; (3) PD-L1+ T cells engaged PD-1+ macrophages, inducing an alternative M2-like program, which had crippling effects on adaptive antitumor immunity. Collectively, we demonstrate that PD-L1+ T cells have diverse tolerogenic effects on tumor immunity.
PMID: 32152508
ISSN: 1529-2916
CID: 4349682

In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma

Li, Fei; Huang, Qingyuan; Luster, Troy A; Hu, Hai; Zhang, Hua; Ng, Wai-Lung; Khodadadi-Jamayran, Alireza; Wang, Wei; Chen, Ting; Deng, Jiehui; Ranieri, Michela; Fang, Zhaoyuan; Pyon, Val; Dowling, Catriona M; Bagdatlioglu, Ece; Almonte, Christina; Labbe, Kristen; Silver, Heather; Rabin, Alexandra R; Jani, Kandarp; Tsirigos, Aristotelis; Papagiannakopoulos, Thales; Hammerman, Peter S; Velcheti, Vamsidhar; Freeman, Gordon J; Qi, Jun; Miller, George; Wong, Kwok-Kin
Despite substantial progress in lung cancer immunotherapy, the overall response rate in KRAS-mutant lung adenocarcinoma (ADC) patients remains low. Combining standard immunotherapy with adjuvant approaches that enhance adaptive immune responses-such as epigenetic modulation of anti-tumor immunity-is therefore an attractive strategy. To identify epigenetic regulators of tumor immunity, we constructed an epigenetic-focused sgRNA library, and performed an in vivo CRISPR screen in a KrasG12D/P53-/- (KP) lung ADC model. Our data showed that loss of the histone chaperone Asf1a in tumor cells sensitizes tumors to anti-PD-1 treatment. Mechanistic studies revealed that tumor cell-intrinsic Asf1a deficiency induced immunogenic macrophage differentiation in the tumor microenvironment by upregulating GM-CSF expression and potentiated T cell activation in combination with anti-PD-1. Our results provide rationale for a novel combination therapy consisting of ASF1A inhibition and anti-PD-1 immunotherapy.
PMID: 31744829
ISSN: 2159-8290
CID: 4208912

Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway

Kurppa, Kari J; Liu, Yao; To, Ciric; Zhang, Tinghu; Fan, Mengyang; Vajdi, Amir; Knelson, Erik H; Xie, Yingtian; Lim, Klothilda; Cejas, Paloma; Portell, Andrew; Lizotte, Patrick H; Ficarro, Scott B; Li, Shuai; Chen, Ting; Haikala, Heidi M; Wang, Haiyun; Bahcall, Magda; Gao, Yang; Shalhout, Sophia; Boettcher, Steffen; Shin, Bo Hee; Thai, Tran; Wilkens, Margaret K; Tillgren, Michelle L; Mushajiang, Mierzhati; Xu, Man; Choi, Jihyun; Bertram, Arrien A; Ebert, Benjamin L; Beroukhim, Rameen; Bandopadhayay, Pratiti; Awad, Mark M; Gokhale, Prafulla C; Kirschmeier, Paul T; Marto, Jarrod A; Camargo, Fernando D; Haq, Rizwan; Paweletz, Cloud P; Wong, Kwok-Kin; Barbie, David A; Long, Henry W; Gray, Nathanael S; Jänne, Pasi A
Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients.
PMID: 31935369
ISSN: 1878-3686
CID: 4264372

CDK7 Inhibition Potentiates Genome Instability Triggering Anti-tumor Immunity in Small Cell Lung Cancer

Zhang, Hua; Christensen, Camilla L; Dries, Ruben; Oser, Matthew G; Deng, Jiehui; Diskin, Brian; Li, Fei; Pan, Yuanwang; Zhang, Xuzhu; Yin, Yandong; Papadopoulos, Eleni; Pyon, Val; Thakurdin, Cassandra; Kwiatkowski, Nicholas; Jani, Kandarp; Rabin, Alexandra R; Castro, Dayanne M; Chen, Ting; Silver, Heather; Huang, Qingyuan; Bulatovic, Mirna; Dowling, Catríona M; Sundberg, Belen; Leggett, Alan; Ranieri, Michela; Han, Han; Li, Shuai; Yang, Annan; Labbe, Kristen E; Almonte, Christina; Sviderskiy, Vladislav O; Quinn, Max; Donaghue, Jack; Wang, Eric S; Zhang, Tinghu; He, Zhixiang; Velcheti, Vamsidhar; Hammerman, Peter S; Freeman, Gordon J; Bonneau, Richard; Kaelin, William G; Sutherland, Kate D; Kersbergen, Ariena; Aguirre, Andrew J; Yuan, Guo-Cheng; Rothenberg, Eli; Miller, George; Gray, Nathanael S; Wong, Kwok-Kin
Cyclin-dependent kinase 7 (CDK7) is a central regulator of the cell cycle and gene transcription. However, little is known about its impact on genomic instability and cancer immunity. Using a selective CDK7 inhibitor, YKL-5-124, we demonstrated that CDK7 inhibition predominately disrupts cell-cycle progression and induces DNA replication stress and genome instability in small cell lung cancer (SCLC) while simultaneously triggering immune-response signaling. These tumor-intrinsic events provoke a robust immune surveillance program elicited by T cells, which is further enhanced by the addition of immune-checkpoint blockade. Combining YKL-5-124 with anti-PD-1 offers significant survival benefit in multiple highly aggressive murine models of SCLC, providing a rationale for new combination regimens consisting of CDK7 inhibitors and immunotherapies.
PMID: 31883968
ISSN: 1878-3686
CID: 4251032