Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:evrong01

Total Results:

30


A recurrent, homozygous EMC10 frameshift variant is associated with a syndrome of developmental delay with variable seizures and dysmorphic features

Shao, Diane D; Straussberg, Rachel; Ahmed, Hind; Khan, Amjad; Tian, Songhai; Hill, R Sean; Smith, Richard S; Majmundar, Amar J; Ameziane, Najim; Neil, Jennifer E; Yang, Edward; Al Tenaiji, Amal; Jamuar, Saumya S; Schlaeger, Thorsten M; Al-Saffar, Muna; Hovel, Iris; Al-Shamsi, Aisha; Basel-Salmon, Lina; Amir, Achiya Z; Rento, Lariza M; Lim, Jiin Ying; Ganesan, Indra; Shril, Shirlee; Evrony, Gilad; Barkovich, A James; Bauer, Peter; Hildebrandt, Friedhelm; Dong, Min; Borck, Guntram; Beetz, Christian; Al-Gazali, Lihadh; Eyaid, Wafaa; Walsh, Christopher A
PURPOSE/OBJECTIVE:The endoplasmic reticulum membrane complex (EMC) is a highly conserved, multifunctional 10-protein complex related to membrane protein biology. In seven families, we identified 13 individuals with highly overlapping phenotypes who harbor a single identical homozygous frameshift variant in EMC10. METHODS:Using exome, genome, and Sanger sequencing, a recurrent frameshift EMC10 variant was identified in affected individuals in an international cohort of consanguineous families. Multiple families were independently identified and connected via Matchmaker Exchange and internal databases. We assessed the effect of the frameshift variant on EMC10 RNA and protein expression and evaluated EMC10 expression in normal human brain tissue using immunohistochemistry. RESULTS:A homozygous variant EMC10 c.287delG (Refseq NM_206538.3, p.Gly96Alafs*9) segregated with affected individuals in each family, who exhibited a phenotypic spectrum of intellectual disability (ID) and global developmental delay (GDD), variable seizures and variable dysmorphic features (elongated face, curly hair, cubitus valgus, and arachnodactyly). The variant arose on two founder haplotypes and results in significantly reduced EMC10 RNA expression and an unstable truncated EMC10 protein. CONCLUSION/CONCLUSIONS:We propose that a homozygous loss-of-function variant in EMC10 causes a novel syndromic neurodevelopmental phenotype. Remarkably, the recurrent variant is likely the result of a hypermutable site and arose on distinct founder haplotypes.
PMID: 33531666
ISSN: 1530-0366
CID: 4793132

Complex Autoinflammatory Syndrome Unveils Fundamental Principles of JAK1 Kinase Transcriptional and Biochemical Function

Gruber, Conor N; Calis, Jorg J A; Buta, Sofija; Evrony, Gilad; Martin, Jerome C; Uhl, Skyler A; Caron, Rachel; Jarchin, Lauren; Dunkin, David; Phelps, Robert; Webb, Bryn D; Saland, Jeffrey M; Merad, Miriam; Orange, Jordan S; Mace, Emily M; Rosenberg, Brad R; Gelb, Bruce D; Bogunovic, Dusan
Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.
PMCID:7398039
PMID: 32750333
ISSN: 1097-4180
CID: 4614282

Transcriptome sequencing identifies a noncoding, deep intronic variant in CLCN7 causing autosomal recessive osteopetrosis

Chorin, Odelia; Yachelevich, Naomi; Mohamed, Khaled; Moscatelli, Ilana; Pappas, John; Henriksen, Kim; Evrony, Gilad D
BACKGROUND:Over half of children with rare genetic diseases remain undiagnosed despite maximal clinical evaluation and DNA-based genetic testing. As part of an Undiagnosed Diseases Program applying transcriptome (RNA) sequencing to identify the causes of these unsolved cases, we studied a child with severe infantile osteopetrosis leading to cranial nerve palsies, bone deformities, and bone marrow failure, for whom whole-genome sequencing was nondiagnostic. METHODS:We performed transcriptome (RNA) sequencing of whole blood followed by analysis of aberrant transcript isoforms and osteoclast functional studies. RESULTS:We identified a pathogenic deep intronic variant in CLCN7 creating an unexpected, frameshifting pseudoexon causing complete loss of function. Functional studies, including osteoclastogenesis and bone resorption assays, confirmed normal osteoclast differentiation but loss of osteoclast function. CONCLUSION/CONCLUSIONS:This is the first report of a pathogenic deep intronic variant in CLCN7, and our approach provides a model for systematic identification of noncoding variants causing osteopetrosis-a disease for which molecular-genetic diagnosis can be pivotal for potentially curative hematopoietic stem cell transplantation. Our work illustrates that cryptic splice variants may elude DNA-only sequencing and supports broad first-line use of transcriptome sequencing for children with undiagnosed diseases.
PMID: 32691986
ISSN: 2324-9269
CID: 4532112

Correction: DPH1 syndrome: two novel variants and structural and functional analyses of seven missense variants identified in syndromic patients

Urreizti, Roser; Mayer, Klaus; Evrony, Gilad D; Said, Edith; Castilla-Vallmanya, Laura; Cody, Neal A L; Plasencia, Guillem; Gelb, Bruce D; Grinberg, Daniel; Brinkmann, Ulrich; Webb, Bryn D; Balcells, Susanna
Following the publication of the article, it was noted that the last column in Table 1, the total % should have read 5/8 (62.5) for the 'Epilepsy' row, and not 5.7 (71.4). This has now been amended in the HTML and PDF of the original article.
PMID: 31477843
ISSN: 1476-5438
CID: 4067022

DPH1 syndrome: two novel variants and structural and functional analyses of seven missense variants identified in syndromic patients

Urreizti, Roser; Mayer, Klaus; Evrony, Gilad D; Said, Edith; Castilla-Vallmanya, Laura; Cody, Neal A L; Plasencia, Guillem; Gelb, Bruce D; Grinberg, Daniel; Brinkmann, Ulrich; Webb, Bryn D; Balcells, Susanna
DPH1variants have been associated with an ultra-rare and severe neurodevelopmental disorder, mainly characterized by variable developmental delay, short stature, dysmorphic features, and sparse hair. We have identified four new patients (from two different families) carrying novel variants in DPH1, enriching the clinical delineation of the DPH1 syndrome. Using a diphtheria toxin ADP-ribosylation assay, we have analyzed the activity of seven identified variants and demonstrated compromised function for five of them [p.(Leu234Pro); p.(Ala411Argfs*91); p.(Leu164Pro); p.(Leu125Pro); and p.(Tyr112Cys)]. We have built a homology model of the human DPH1-DPH2 heterodimer and have performed molecular dynamics simulations to study the effect of these variants on the catalytic sites as well as on the interactions between subunits of the heterodimer. The results show correlation between loss of activity, reduced size of the opening to the catalytic site, and changes in the size of the catalytic site with clinical severity. This is the first report of functional tests of DPH1 variants associated with the DPH1 syndrome. We demonstrate that the in vitro assay for DPH1 protein activity, together with structural modeling, are useful tools for assessing the effect of the variants on DPH1 function and may be used for predicting patient outcomes and prognoses.
PMID: 30877278
ISSN: 1476-5438
CID: 3733592

Integrated genome and transcriptome sequencing identifies a noncoding mutation in the genome replication factor DONSON as the cause of microcephaly-micromelia syndrome

Evrony, Gilad D; Cordero, Dwight R; Shen, Jun; Partlow, Jennifer N; Yu, Timothy W; Rodin, Rachel E; Hill, R Sean; Coulter, Michael E; Lam, Anh-Thu N; Jayaraman, Divya; Gerrelli, Dianne; Diaz, Diana G; Santos, Chloe; Morrison, Victoria; Galli, Antonella; Tschulena, Ulrich; Wiemann, Stefan; Martel, M Jocelyne; Spooner, Betty; Ryu, Steven C; Elhosary, Princess C; Richardson, Jillian M; Tierney, Danielle; Robinson, Christopher A; Chibbar, Rajni; Diudea, Dana; Folkerth, Rebecca; Wiebe, Sheldon; Barkovich, A James; Mochida, Ganeshwaran H; Irvine, James; Lemire, Edmond G; Blakley, Patricia; Walsh, Christopher A
While next-generation sequencing has accelerated the discovery of human disease genes, progress has been largely limited to the "low hanging fruit" of mutations with obvious exonic coding or canonical splice site impact. In contrast, the lack of high-throughput, unbiased approaches for functional assessment of most noncoding variants has bottlenecked gene discovery. We report the integration of transcriptome sequencing (RNA-seq), which surveys all mRNAs to reveal functional impacts of variants at the transcription level, into the gene discovery framework for a unique human disease, microcephaly-micromelia syndrome (MMS). MMS is an autosomal recessive condition described thus far in only a single First Nations population and causes intrauterine growth restriction, severe microcephaly, craniofacial anomalies, skeletal dysplasia, and neonatal lethality. Linkage analysis of affected families, including a very large pedigree, identified a single locus on Chromosome 21 linked to the disease (LOD > 9). Comprehensive genome sequencing did not reveal any pathogenic coding or canonical splicing mutations within the linkage region but identified several nonconserved noncoding variants. RNA-seq analysis detected aberrant splicing in DONSON due to one of these noncoding variants, showing a causative role for DONSON disruption in MMS. We show that DONSON is expressed in progenitor cells of embryonic human brain and other proliferating tissues, is co-expressed with components of the DNA replication machinery, and that Donson is essential for early embryonic development in mice as well, suggesting an essential conserved role for DONSON in the cell cycle. Our results demonstrate the utility of integrating transcriptomics into the study of human genetic disease when DNA sequencing alone is not sufficient to reveal the underlying pathogenic mutation.
PMID: 28630177
ISSN: 1549-5469
CID: 3332592

One brain, many genomes

Evrony, Gilad D
PMID: 27811258
ISSN: 1095-9203
CID: 3332582

A PIECE OF MY MIND. A Wild Rotation

Evrony, Gilad D
PMID: 27533153
ISSN: 1538-3598
CID: 3332572

Resolving rates of mutation in the brain using single-neuron genomics

Evrony, Gilad D; Lee, Eunjung; Park, Peter J; Walsh, Christopher A
Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.
PMID: 26901440
ISSN: 2050-084x
CID: 3332562

Somatic mutation in single human neurons tracks developmental and transcriptional history

Lodato, Michael A; Woodworth, Mollie B; Lee, Semin; Evrony, Gilad D; Mehta, Bhaven K; Karger, Amir; Lee, Soohyun; Chittenden, Thomas W; D'Gama, Alissa M; Cai, Xuyu; Luquette, Lovelace J; Lee, Eunjung; Park, Peter J; Walsh, Christopher A
Neurons live for decades in a postmitotic state, their genomes susceptible to DNA damage. Here we survey the landscape of somatic single-nucleotide variants (SNVs) in the human brain. We identified thousands of somatic SNVs by single-cell sequencing of 36 neurons from the cerebral cortex of three normal individuals. Unlike germline and cancer SNVs, which are often caused by errors in DNA replication, neuronal mutations appear to reflect damage during active transcription. Somatic mutations create nested lineage trees, allowing them to be dated relative to developmental landmarks and revealing a polyclonal architecture of the human cerebral cortex. Thus, somatic mutations in the brain represent a durable and ongoing record of neuronal life history, from development through postmitotic function.
PMID: 26430121
ISSN: 1095-9203
CID: 3332552